
HTTPCrypt: Fast and Simple Secure Protocol

Paper #273
12 pages

Abstract
We introduce HTTPCrypt, a scheme of opportunistic en-
cryption for the plain HTTP protocol designed to build
web services compatible with the existing clients, servers
and proxies ecosystem. HTTPCrypt uses state-of-art crypto-
graphic primitives to provide both high performance through-
put and low latency connection establishment, as well as
complete interoperability with any middlebox that supports
plain HTTP traffic. Unlike other opportunistic encryption
schemes, HTTPCrypt defines procedures to establish name-
based authenticity of a server even in the case of networks
with restrictive access policies. We evaluate the practical-
ity of deploying HTTPCrypt by integrating it into a popular
HTTP server stack and evaluating it against alternative op-
portunistic encryption schemes.

1. Introduction
Transport Layer Security (TLS) has long been the standard
choice for HTTP data encryption (to prevent passive snoop-
ing) and the validation of peer identities (to prevent active
attacks). Clients connections are secured by first establishing
a TLS connection to the endpoint, and then issuing standard
HTTP requests across TLS tunnel. This separation has sig-
nificantly increased the latency of encrypted web browsing
due to the multiple network round-trips required, and moti-
vated the proposal of TLS protocol extensions [24] to opti-
mise the process.

The introduction of the HTTP/2.0 standardisation pro-
cess [19] – the first major HTTP protocol revision since 1999
– has brought up the possibility of supporting opportunistic
encryption for all web services, including those connections
whose identities cannot be verified due to server miscon-
figuration, self-signed certificates, or expired signatures. All
such proposals (§7.2) have involved upgrading the connec-

[Copyright notice will appear here once ’preprint’ option is removed.]

Figure 1. The overall structure of an HTTPCrypt connec-
tion. The server public key can be retrieved out-of-band via
DNS, or directly over HTTP.

tion to TLS, thus maintaining the dependency to the complex
suite of libraries that implement the full TLS protocol.

This paper introduces HTTPCrypt: an alternative appli-
cation level HTTP extension that enables HTTP payload en-
cryption with the following desirable properties:

• Transparency for existing HTTP caches and proxies,
meaning that it is expensive to distinguish HTTPCrypt
requests from plain HTTP requests;

• No significant latency increase of opportunistically en-
crypted connections vs plain HTTP;

• Removes the dependency on TLS and replaces it with
cryptography suitable for embedded devices;

• Optional end-to-end identity checking;
• Low performance overhead for server software, including

support for using the same efficient kernel system calls to
transfer large files.

• Easy migration to the encrypted connections for the ex-
isting software

The remainder of this paper will first outline the high-
level protocol properties (§2), followed by a detailed expla-
nation (§3), protection against common attacks (§4), and dis-
cussion of some of the quirks unique to HTTP (§5), and con-

1 2015/10/23

clude by evaluating our implementation of HTTPCrypt vs a
popular application stack (§6).

2. Design Goals
HTTPCrypt is designed to work with the HTTP protocol
and its many quirks, and avoids forcing a dependency on
TLS as the sole method of opportunistic encryption. We will
next explain our approach to HTTP compatibility (§2.1), the
impact on performance and latency (§2.2), and finally how
our approach is easy to embed (§2.3).

2.1 HTTP Compatibility
The HTTP protocol has explicitly supported proxying since
its inception, and the influence of middleboxes can no longer
be ignored when updating protocols [23]. Middleboxes have
hampered the adoption of many new Internet protocols; from
full transport stacks such as SCTP [31] or CurveCP [3],
to extensions to existing protocols such as TCPCrypt [10]
or MPTCP [2]. It is also common to encounter monitored
gateways that provide Internet access purely through HTTP
proxies that actively intercept or block HTTPS traffic.

The logical choice to avoid the influence of middleboxes
while adding opportunistic encryption is to make HTTP re-
quests that are difficult to distinguish from ordinary requests.
In particular, the Cookie HTTP header is well suited to car-
rying cryptographic data, as it usually contains an encrypted
payload that is indistinguishable from random data. Request
URL is another suitable place for putting cryptographic data
by the same reason as cookies.

Another main difference with the use of opportunistic
encryption vs a fully established secure transport is that peer
identities need not be fully verified. HTTPCrypt supports
establishing the remote peer’s identity via side channels such
as the local DNS service, and we explain later (§3.1) why
this is a reasonable approach in the modern Internet.

The basic scheme of an HTTPCrypt request is depicted
in Figure 1. A client obtains the server public key out-of-
band, and makes a normal HTTP request with the session
key contained in the cookie. The encrypted contents then
follow containing nonce and authentication tag.

In plain HTTP protocol, there is no payload within GET

requests. However, for HTTPCrypt any request requires en-
crypted content. The first way to solve this incompatibility is
to use POST requests for all HTTP messages. Another option
is to encode the complete encrypted HTTP request within
the request URL. In this case, the limit of HTTP request
that could be encoded is about 2K due to URL length re-
striction (that is 2083 bytes). Since encrypted payload con-
tains a nonce, all request URLs will be unique preventing
thus caching on proxies. HTTP pragmas could also reduce
chances to be cached by middleboxes for HTTPCrypt re-
quest but this does not matter for the protocol itself merely
helping to reduce unnecessary caching by intermediate prox-
ies.

HTTPCrypt is compatible with all the major HTTP trans-
fer encodings, such as chunked encoding, and can maintain
keep-alive connections just as normal HTTP does. More-
over, HTTPCrypt natively supports name based virtual hosts
without the need for protocol extensions such as the TLS
Server Name Indication [15].

Unlike TLS, where there is a ciphersuites agreement
phase, we claim that it can be skipped for the vast major-
ity of REST based HTTP services: in case of ciphersuite
migration, it is possible to specify a new scheme explicitly,
for example by creating a new set of access URL’s or even by
creating a dedicated host for the new ciphers. Moreover, the
current encryption scheme used by a specific server could be
explicitly stated in the DNS.

2.2 Latency and performance
HTTPCrypt requests follow the HTTP model of starting
without any preliminary handshake phases. The client is
responsible for obtaining the server public key (§3.1), and
the only extra information that needs to be passed to a client
connection is the client’s own public key. The client can
therefore encrypt an HTTP request immediately using its
own private key and the server’s public key, and assume that
the server can decrypt the request using its own private key
and the client’s public key.

One drawback of this approach is the vulnerability to
replay attacks, since a server cannot send its own random
data before the initial client request. We discuss later how
developers can mitigate this problem at the application level
(§4.1) to prevent replaying the whole session. The initial
request can always still be replayed, but this is not a security
flaw if mitigated at the application level or if used to access
read-only data.

HTTPCrypt is designed to establish HTTP sessions by
skipping intermediate phases of key exchange or capability
agreement for a connection. The disadvantage of this ap-
proach is that it reduces the flexibility of the connections,
but it is also simpler and prevents downgrade attacks, such
as the recent TLS vulnerability [25].

The performance and latency benefits from the above
simplifications are significant, and make this is a viable
approach for widespread implementation of opportunistic
encryption. The data passed over HTTPCrypt is encrypted
in-place, with a small authentication tag for a data chunk
placed prior to each the encrypted payload. This allows
using of multi-buffer kernel system calls such as writev

to avoid data copying and improve performance. It also
permits implementations to transfer arbitrary sized chunks
of payload to optimize the connection utilization, and not
be limited to a window of the maximum intermediate buffer
size.

It is very common to encounter many short requests in
HTTP, particularly when dealing with proxies that do not
fully support HTTP/1.1 keep-alive. Opportunistic encryp-
tion schemes that require TLS handshakes are costly both

2 2015/10/23

in terms of connection setup latency and the request rate. In
contrast, HTTPCrypt skips the full handshake-term connec-
tions, thus supporting the asynchronous requests to advertis-
ing networks or loggins counters that are commonplace in
modern websites.

2.3 Integration with the existing code
The TLS protocol stack is very complex, and even embedded
implementations contain tens of thousands of lines of code.
One reason for the code bloat is that all TLS implementa-
tions have to implement multiple cipher suites, key exchange
and signing schemes for the purposes of backwards compat-
ibility.

Rather than propagate this complexity into opportunis-
tic encryption (which we want deployed as widely as pos-
sible), HTTPCrypt specialises its encryption to be based on
the NaCL cryptobox primitives [5]. Cryptobox can be imple-
mented using both a high-performance profile or as a small
library within about a thousand lines of portable code [9].

The design of HTTPCrypt proposes the minimal changes
to the existing applications: just use any suitable cryptobox
library (choosing either performance or code size), get any
HTTP parser library and encrypt the payload using crypto-
box construction. Unlike TLS, HTTPCrypt does not inter-
fere with the IO processing logic nor require some interme-
diate buffering.

3. Protocol Description
We now describe describe the architecture of HTTPCrypt in
detail, via the handshake procedure (§3.1), request structure
(§3.2), cryptographic primitives (§3.4) and session resump-
tion (§3.5).

3.1 Handshake Procedure
The client initially obtains and checks the ephemeral public
key of a server. Since we are dealing with opportunistic
encryption, it is not necessary to protect this phase against
active attacks. Methods of retrieving the public key include:

• Obtain an ephemeral public key from the corresponding
DNS record, and check the authenticity of this reply
using DNSSEC [1] or DNSCurve [6].

• Obtain a DNS record with the current ephemeral public
key as a SPKI or x.509 certificate using, for example
EdDSA [8] signature scheme to fit the whole certificate
in a DNS record (which is typically allowed to be not
larger than 512 bytes for many constrained networks).

• Perform a plain-text HTTP OPTIONS request to the target
HTTP server and obtain the current certificate.

The Domain Name System is the preferred way to ob-
tain the ephemeral public keys since DNS is used to re-
solve names and to verify domains ownership. If DNSSEC
or DNSCurve are enabled for name resolution, it is also pos-
sible to validate the published key via DNS without PKI

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

net=2a0 order
}

Header

Payload . . .

Figure 2. Key material encoding inside AAAA records

system. On the other hand, DNSCurve breaks intermediate
DNS caching and DNSSEC can significantly increase re-
quests latencies for clients as each name must be validated
using multiple requests for each name component when us-
ing DNSSEC. DNS caching could reduce the negative ef-
fect of validation but it is still required to ask a caching
server for each name component for a client. Moreover,
DNSSEC and DNSSCurve can be filtered in restrictive net-
works, where plain DNS requests are the last resort avail-
able for the clients. Therefore, HTTPCrypt enabled services
should publish the full PKI certificate in the DNS record to
be compatible with all clients. Using of the modern signature
schemes, such as EdDSA, allows storing a full x509 certifi-
cate within 512 bytes that is typical limit for a DNS record.

Storing ephemeral keys in the DNS defines their expira-
tion time as equal to the DNS TTL value. HTTPCrypt de-
fines these methods to store ephemeral keys in DNS:

• DANE TLSA records [22] that contain the full ephemeral
key signed by a trusted key within x.509 or SPKI certifi-
cate;

• TXT records can carry the keys and signatures encoded
with Base64 encoding;

• AAAA or A resource records can also encode keys and
signatures that (described below)

AAAA record tunnelling Not all types of DNS records are
allowed by some network policies; for instance, a common
practice is to filter all unknown DNS resource records. TLSA
records have been proposed relatively recently, and so are
treated as unknown by many DNS recursive forwarders. TXT
queries are forbidden in some networks since such records
are frequently used to construct IP-over-DNS tunnels. This
restriction also denies DNSCurve requests that use the TXT

compatibility mode for their encrypted payloads.
In such a constrained network, HTTPCrypt can use IPv6

AAAA records to encode public key material. We store the
relative order of the key material record inside the first 16
bits of the address and use the remaining 120 bits to encap-
sulate the payload in network-endian order. This encoding is
depicted in Figure 2.

The first 12 bits are used to define IPv6 addresses. The
order field is required to reconstruct the payload when
a DNS server performs round-robin rotation of resource
records. With 4 bits of order available, it is possible to
encode up to 16 addresses with 112 bits of useful payload.
Therefore, to encode a 256-bit key and 512-bit signature, we
need 8 IPv6 addresses: three for the public key and five for

3 2015/10/23

the signature. An additional address can be used to publish
when this signature has been issued and the validity interval.

Deriving a session key After obtaining the server’s pub-
lic key, a client generates (or reuses) its own key pair and
derives the shared secret using the curve25519 scalar mul-
tiplication procedure on the server’s public key and its local
private key. An additional round of pseudo-random permu-
tation then produces the final session key[5].

The resulting session key is subsequently used to encrypt
and authenticate the HTTP payload. The authentication tag
only covers the encrypted payload, since middleboxes can
modify HTTP headers or the structure of a plain HTTP
request. In contrast, the HTTP payload is not altered by
proxies.

After receiving the HTTPCrypt request from a client, a
server derives the shared secret using its local secret key and
the client’s public key from the Cookie HTTP header. The
cookie also contains the ID of the server’s public key (§3.2).

All further requests down the TCP connection (including
HTTP Keep-Alive sessions) are encrypted using the estab-
lished shared key. The keep-alive timeout must thus be less
than the ephemeral key lifetime to guarantee forward secrecy
for all long term connections.

3.2 Request structure
HTTPCrypt requests are designed to be difficult to distin-
guish from plain HTTP requests. Therefore, HTTPCrypt
uses the HTTP Cookie header to provide the public key of
a client to the server. The structure of this header is:

Cookie: IDsk||pad=Kclient||pad

All the values are encoded with base64 that is commonly
used in HTTP cookies. The padding prevents middleboxes
from detecting the specific length of the public key and ID
(if desired). Paddings should have unpredictable length and
content for that purposes. The server key ID field applies a
SHA3 cryptographic hash function to the server’s public key
and takes the first 10 bytes of its output:

ID = take(10, PRF(pubkey))

The server uses this ID when rotating ephemeral keys
to select the correct key for a particular connection. Two
ID collision probability is 1/240 which is suitable for the
purpose of public keys distinguishing on a server’s side in
conjunction with Host header.

In HTTPCrypt, the encrypted payload encapsulates the
real HTTP request, but some HTTP headers are used from
the unencrypted part, for instance the:

• Host is used to distinguish name-based virtual hosts and
is required if those hosts have different public keys. Al-
ternatively, the HTTP server may distinguish hosts by the
IDsk value and ignore this header.

• User-Agent header may be checked by middleboxes.

• Content-Length, Content-Range headers are used by
the HTTP session as-is.

• Pragma, Expires and Cache-Control prevents proxies
from caching encrypted requests.

While most of the HTTP headers could be sent unen-
crypted to save computational resources, some headers such
as Cookie or Referer must remain encrypted (the former be-
cause its use is overloaded by the HTTPCrypt request struc-
ture). We do not define the exact list of headers that must be
encrypted as this depends on the applications’ architecture.

If the payload is placed within HTTP body, HTTPCrypt
uses the unencrypted URL to store the initial nonce for the
request. We propose to use the first path component after the
HTTP path as nonce whilst the initial path could be used
by a web server to find HTTPCrypt protected resource. The
overall URL structure is depicted as following:

GET

HTTP path︷︸︸︷
/user

used by HTTPCrypt︷ ︸︸ ︷
/encoded nonce

optional,ignored︷ ︸︸ ︷
?random query HTTP/1.1

The encrypted payload has the following structure (||
denotes concatenation):

MAC||Encrypted HTTP request

In the case when request is completely encoded within
URL, the encrypted payload is placed (base64 encoded) into
the query parameters component of URL. The URL structure
changes in this case to the following one:

GET

path︷︸︸︷
/user

used by HTTPCrypt︷ ︸︸ ︷
/encoded nonce ?query︸ ︷︷ ︸

MAC||P

HTTP/1.1

3.3 Chunked encoding
In HTTP standard, chunked encoding [17] must be sup-
ported by any client, therefore any proxy can split the
original request into chunks. Hence, HTTPCrypt provides
support to transfer chunked HTTP messages securely by
means of the internal encrypted chunks. To distinguish
between chunked and plain encoding, HTTPCrypt uses
the special query ?chunked=1 to tell a client that the re-
quest is split to a set of encrypted chunks. The traditional
Content-Transfer-Encoding header could not be used
since it can be altered by middleboxes (for example, when a
proxy performs gzip encoding). However, encrypted chunks
support requires more complicated procedure to decode, so
it might be avoided when implementing simple services. In
this case, a client always reconstruct a server’s reply as a sin-
gle chunk; even if the plain request contains chunks they are
merged into a single buffer for decryption and verification.

When HTTP chunked encoding is used, each chunk has
its own nonce, MAC tag and additional length of the en-
crypted content. The second length specifies the size of data

4 2015/10/23

that is authenticated by this MAC with the specific nonce.
It is needed when a middlebox or a proxy performs chunks
resegmentation. In this case, a client will still be able to re-
store the original chunks sent by a server, decrypt and au-
thenticate them properly. To avoid reordering of chunks, the
subsequent nonces after the first one should be incremented
as counter. Additionally, each authentication tag should be
calculated using the previous authentication tag in addition
to the current encrypted chunk content as following:

M(i) = Mn(Mn−1(i− 1)||P)

where P is the current encrypted payload and n is the current
nonce value. In this scheme, an attacker cannot remove any
chunk of data from a message: if he or she removes the first
chunk, then MAC won’t be valid for the subsequent chunk as
the original MAC is calculated using the first chunk MAC.
The same logic is valid for all subsequent chunks. Even in
the case if chunks have the same content, the fact that they
are encrypted using different nonces and fact that the MAC
tag is calculated over the encrypted payload (encrypt-then-
mac method) provide negligible chances that MAC tags for
these equal chunks will be the same.

Nonetheless, the last chunk is special. In plain HTTP, the
last chunk has always zero length. However, re-using of this
plain scheme opens a security breach: an attacker can simply
remove some chunks from the end of a message adding un-
encrypted zero-length chunk. Therefore, HTTPCrypt defines
a special encrypted zero-chunk which contains a next nonce,
zero encrypted length and authentication tag calculated as
following:

M = Mn+1(Mn(i− 1)||0)

After this special tag, all following payload could be used
for compatibility with HTTP (namely, the last zero chunk)
and should be ignored by HTTPCrypt protocol.

The structure of chunked HTTPCrypt request is depicted
as following:

<Chunk length>

<MAC>

<Encrypted payload length>

<Encrypted chunk content>

...

<Chunk length>

<Nonce>

<MAC>

0

<HTTP zero chunk>

To reconstruct the final HTTP message HTTPCrypt de-
fines the following procedure:

1. Parse the original request and append all unencrypted
headers except for the Cookie header.

2. For each encrypted chunk or the whole message incre-
ment the previous nonce, read the authentication tag and
verify the encrypted content using the previous MAC tag
as additional data for authentication (for the second and
subsequent chunks). If the verification succeeds, decrypt
the contents and parse the encapsulated request.

3. The request URI in the encapsulated request replaces
the original URI and all encrypted headers replace the
corresponding unencrypted headers.

If MAC verification fails for any chunk, the peer sends
an HTTP 500 error code inside the encrypted payload to
prevent connection termination by an adversary who can
inject arbitrary HTTP messages to the peers.

3.4 Cryptographic primitives
HTTPCrypt encryption is based on the Cryptobox construc-
tion introduced by Daniel Bernstein in the NaCL crypto-
graphic library [5]. This construction defines both secrecy
and integrity for the messages based on public key cryptog-
raphy, and is a conjunction of (i) public key exchange proce-
dure; (ii) a stream cipher; and a (iii) one-time authentication
algorithm.

The wire format of Cryptobox specifies a cryptographic
nonce, an authentication tag (MAC) and the encrypted pay-
load.

Nonces Nonces for the first message in an HTTP session
is generated randomly by both a client and a server. Nonces
length is chosen to be long enough to make the probability of
repetition negligible. Bernstein defines a nonce length of 24
bytes which is 2192 of possible nonces values and the prob-
ability of nonces collision as low as at least 1/2128 [5]. For
the subsequent chunks or messages within the same keep-
alive HTTP session, client and server should monotonically
increase their initial nonces in counter like matter. Switching
to counters allows to skip nonces in all but the first chunks.

Algorithms selection The original NaCL implementation
suggests the following components to be used in the crypto-
box:

• curve25519 and hsalsa20 as the public key exchange
operation

• xsalsa20 for symmetric encryption
• poly1305 for message authentication

At present, the salsa cipher family is superseded by
chacha ciphers that have the same internal architecture but
are optimised for the modern hardware and vectorized oper-
ations. We later evaluate the chacha cipher vs other state-of-
art ciphers such as AES (§6). The most significant advantage
of chacha is good performance on the commodity hardware,
including embedded systems based on ARM or MIPS pro-
cessors as well as x86.

Hence, our final selection of symmetric encryption algo-
rithm is the chacha20 stream cipher. Moreover, the hsalsa

5 2015/10/23

and xsalsa ciphers are replaced with the corresponding
chacha variants as described in [7].

3.5 Session Resumption
Since the generation of public key shared secrets is an ex-
pensive procedure, HTTPCrypt defines several approaches
to skip it for already establishes sessions. HTTPCrypt uses
the same common principles that are defined in TLS [12]
by means of a session cache (§3.5.1) and ticket mechanism
(§3.5.2).

3.5.1 Session Cache
The session cache stores some of the client’s state on the
server side to avoid recalculating it. The state in HTTPCrypt
includes the hashes of the client’s and server’s ephemeral
public keys, and the resulting shared secret. When reestab-
lishing a session, a server finds the cached state based on the
public keys fingerprints and reuses the shared secret instead
of regenerating it using public key cryptography. Session ex-
piration is based on the server’s ephemeral public key life-
time, and a least-recent-use expiration strategy if there are
more clients than session cache space available. The server
must destroy sessions associated with an expired ephemeral
key in order to ensure that forward secrecy is preserved.

3.5.2 Sessions tickets
Session tickets are a mechanism for an HTTPCrypt server
to support session resumption without having to store per-
client state [30]. This method implies that a client supports
and enables tickets when resuming an HTTPCrypt connec-
tion. When using session tickets, the shared state is en-
crypted by a symmetric secret key known only by the server
and subsequently passed to the client. The client can then
reconnect by including a previously obtained session ticket
in the initial handshake. The server decrypts and verifies
this ticket and restores the session without an additional
key exchange procedure being required. Session tickets in
HTTPCrypt have the same structure and definition as in TLS
with the only difference that an HTTP header is used to store
and pass a session ticket.

4. Security Analysis
We now elaborate on the HTTPCrypt protocol’s security
properties (§4.1), support for forward secrecy (§4.2) and de-
nial of service resistance (§4.3). We define the threat model
for HTTPCrypt as follows:

• HTTPCrypt should be resistant to passive, active and
denial-of-service attacks;

• HTTPCrypt should provide both secrecy and integrity for
transmitted payload;

• There should be no easy way to distinguish HTTPCrypt
requests from plain HTTP traffic.

4.1 HTTPCrypt Security Model
To defend against active attacks such as Man-in-the-Middle,
HTTPCrypt uses the traditional model of peer validation us-
ing public key signatures and trusted 3rd party authorities.
When using DNS-based signatures the authorities are de-
fined as trusted DNS anchors, while in the case of a certifi-
cate chain HTTPCrypt uses the traditional PKI model where
a peer’s key can be signed by any trusted authority.

HTTPCrypt recommends the use of DNS chains of trust
granted by means of DNSSEC or DNSCurve anchors. Nev-
ertheless, for embedded appliances or difficult-to-change
infrastructure the cost of a complete DNSSEC validation
might be too expensive. Furthermore, the cryptographic al-
gorithms and standards recommended by DNSSEC (e.g.
1024-bit RSA), are more expensive than state-of-art cryp-
tography.

In contrast, DNSCurve provides secure and efficient cryp-
tographic primitives but is not widely deployed in the Inter-
net for various reasons – both historical and more practi-
cal since DNSCurve does not interoperate with intermediate
DNS caching. Therefore, the traditional PKI model based on
EdDSA signatures [8] is a reasonable fall-back choice for
HTTPCrypt validation.

4.1.1 Replay Protection
Protecting against reply attacks is more complicated than in
HTTPS, since HTTPCrypt does not require a server hand-
shake with a random cookie provided by the server. In
HTTPCrypt, the first request can always be replayed by an
adversary for the duration of the server’s ephemeral key it is
purely client initiated.

It is possible (and recommended) to implement replay
protection at the application level, for example by providing
a unique authentication token from server to a client before
granting access to the restricted area. However, a session
before the first server reply is not protected against replay
attacks.

To protect the subsequent session, the server places the
random cookie in the encrypted and authenticated reply, for
example inside a predetermined HTTP header. If the first
request sent over HTTPCrypt is limited to an idempotent
GET method, an adversary can capture and replay the first
request, but will not be able to gain any advantage since the
server’s reply then includes a random element. Therefore,
an attacker cannot replay any subsequent messages within a
session, in particular side-effecting operations such as HTTP
POST or DELETE methods.

Here is the practical example of replay protection applied
to an HTTPCrypt session. Initially, a client sends a GET

request that contains a client’s random cookie within the
header inside the encrypted payload to provide protection
from replayed server’s messages:

Client-Random: <24 bytes of random data>

6 2015/10/23

A server, in turn, generates the full authentication token
(that should be long enough to make repetition probability
negligible) by appending its own random cookie and pushes
it inside the encrypted header:

Random: <client random><server random>

This model provides effective replay attacks protection.
For example, if an adversary can repeat the server’s replies,
then a client will not be able to match its own random part.
Similarly, a server will fail to verify its own cookie and will
drop the replayed requests if the client is replayed. Placing
random cookies inside the authenticated and encrypted pay-
load prevents an adversary from both observing or modify-
ing the tokens.

4.2 Forward Secrecy
HTTPCrypt uses slowly rotating ephemeral public keys for
HTTP servers to provide forward secrecy [14]. Clients gen-
erate a new keypair for each unique HTTPCrypt session.
If DNS is used to store and validate public keys, the rota-
tion of ephemeral servers keys is implicitly defined by the
DNS time-to-live (TTL) property used as the lifetime value
for the ephemeral server’s key. To avoid time synchronisa-
tion issues, servers should generate new ephemeral keys at
each period of time equal to the DNS resource record’s TTL
value, and publish keys material to the DNS server.

HTTPCrypt does not mandate an exact procedure for up-
dating the DNS, since any of the standard methods used all
serve; e.g. AXFR, an LDAP directory or by executing scripts
via SSH. Servers just need to be able to store ephemeral keys
for the time equal to two DNS TTL values to be able to inter-
act with the clients that have previous keys cached in some
DNS cache Hence, the real ephemeral key lifetime is two
DNS TTL periods. The servers should destroy the keys from
persistent storage once they have expired.

4.3 Denial-of-Service Protection
Availability is an important property of HTTPCrypt if it is
to achieve wide deployment. Unlike TLS, the HTTPCrypt
server computes the shared key one the first stage of a con-
nection. This operation is expensive in terms of CPU re-
sources, whereas in TLS all computationally complex pro-
cedures are performed at the later stages of the handshake
(starting from the second message received from a client).

At first glance, this is a disadvantage of the HTTPCrypt
design. However, we observe that the TCP three-way hand-
shake protects a HTTPCrypt server from promoting spoofed
requests, to the established state. On the other hand, if an
adversary is able to establish a valid TCP connection (for in-
stance, via a distributed botnet) then there are no obstacles
to continue to the additional stages of a TLS negotiation and
force the server to execute CPU expensive computations.

Therefore, HTTPCrypt is no more vulnerable to denial-
of-service attacks than HTTP+TLS. Moreover, since the ran-
dom response cookies are signed by the server in TLS, it re-

quires more resources to perform signing and shared secret
generation than the HTTPCrypt mechanism of merely gener-
ating a shared secret and encrypting the cookie. HTTPCrypt
could also upgrade its scope to include cryptographic puz-
zles as part of its handshake, for example as defined in the
MinimalT [28] protocol. The concrete definition and evalu-
ation of crypto puzzles are beyond the scope of this paper.

5. Discussion
We now describe the implementation peculiarities used by
our HTTPCrypt prototype, beginning with low-level cryp-
tographic optimisations (§5.1), operating system accelera-
tion (§5.2), and integration with existing application stacks
(§5.3).

5.1 Cryptobox Optimizations
As a default ciphers suite HTTPCrypt proposes chacha20 [4]
as stream cipher and pseudo-random function, poly1305 as
one time authenticator, and curve25519 as key exchange
function. However, these primitives could be easily switched
to another ones (for example, further we demonstrate openssl
cryptography used by HTTPCrypt). In our experiments, we
use optimized versions of chacha20-poly1305 [26] and op-
timized version of curve25519 ECDH implementation de-
rived from Sandy2x [11]. Both bulk encryption and key ex-
change algorithms benefit from AVX instructions set imple-
mented in Intel processors.

We have also extended the original NaCL cryptobox
primitive to allow vectorization of the encryption, for ex-
ample, to encrypt headers and body in the same call to the
API. This change still allows to encrypt and authenticate
data in-place and avoid intermediate buffering.

5.2 Operating System Optimizations
Contemporary operating systems provide various high per-
formance systems calls to optimise the I/O handling for serv-
ing HTTP requests with a high throughput. For example, an
HTTP server running on Linux or FreeBSD can utilise the
sendfile [33] system call to transfer a file to a socket di-
rectly via the kernel without requiring intermediate copying
through user-space buffers. Some variants of this system call
(e.g. the FreeBSD sendfile) also accept arbitrary prefixes
as arguments.

Unlike TLS that requires intermediate buffering, HTTPCrypt
can use the semantic of sendfile call to send files en-
crypted without requiring copying through userspace. To
support HTTPCrypt, the sendfile interface needs to be ex-
tended to accept a session key and a generated nonce. Bulk
data can be encrypted directly in the kernel. In contrast, in
TLS other protocol components, such as TLS Alerts or other
extensions all require complex processing that is not easy (or
wise) to put into the kernel.

7 2015/10/23

int http_crypt_write(

char *plain , size_t plainlen ,

char *payload , size_t paylen ,

char *pk, char *sk) {

struct iovec iov [4];

unsigned char n[NONCELEN], m[MACLEN];

randombytes(n, sizeof(n));

cryptobox_encrypt_inplace(

payload , paylen , n, pk , sk , m);

iov [0]. iov_base = plain;

iov [0]. iov_len = plainlen;

iov [1]. iov_base = n;

iov [1]. iov_len = sizeof(n);

iov [2]. iov_base = m;

iov [2]. iov_base = sizeof(m);

iov [3]. iov_base = payload;

iov [3]. iov_len = paylen;

return (writev(fd, iov , 4));

}

Figure 3. Sample code fragment illustrating HTTPCrypt
request creation and writing to a socket in C

5.3 Integration with Existing Software
HTTPCrypt is designed to be integrated with existing appli-
cation easily. While it is relatively straightforward to migrate
the already written plaintext services to TLS by means of a
proxy such as stud1, it is more difficult to integrate TLS
stack directly into an application that is not specifically de-
signed for to support TLS for the following reasons:

• TLS alerts and handshakes change the connection pro-
cessing logic significantly, especially for asynchronous
or non-blocking applications;

• TLS uses intermediate buffering for all data transfers that
leads to additional latency and performance penalties.

In contrast, in HTTPCrypt, there are no protocol alerts
or additional handshake stages to complicate integration.
Applications thus can send or receive data without any in-
termediate steps, leaving the event processing logic in the
client and server unchanged. In TLS, read operation might
require writing and vice-versa: write operation might request
reading. Moreover, an application can create messages in
HTTPCrypt without copying data to an intermediate buffer
since all data is encrypted and authenticated in-place. List-
ing 3 demonstrate how simple HTTPCrypt request creation
using multiple buffers operations is (namely, writev and
readv).

Reading and processing of HTTPCrypt requests is im-
plemented by extracting the authentication tag from the
encrypted payload, and parsing the following encapsulated
HTTP request as defined earlier (§3.2).

1 https://github.com/bumptech/stud

To migrate to HTTPCrypt from plaintext HTTP, appli-
cations must also use a cryptographic quality random num-
ber generator to generate nonces and key pairs. This is par-
ticularly important where there is not much entropy avail-
able, for example in embedded devices [20] or virtual ma-
chines [16]. However, this requirement is held for TLS as
well.

5.4 Embedded usage
HTTPCrypt is particularly well suited to embedded devices
where including the full TLS suite is too large or too slow
to use. The CPUs used in embedded appliances are often not
able to drive encrypted connections at a reasonable rate as
they have neither hardware cryptographic acceleration nor
optimised instructions cores.

HTTPCrypt with the static key model is a better choice to
protect communications on such embedded devices. Despite
the fact that this scheme does not guarantee forward secrecy,
it is still better than plaintext HTTP connections by provid-
ing stronger confidentiality and authentication properties.

There are several optimised embedded implementations
of the Cryptobox construction elements used in HTTPCrypt;
for example, ARM NEON specific optimisations to speed up
ChaCha20-Poly1305. There is also a generic implementa-
tion of Cryptobox optimized for code size and memory con-
sumption called TweetNaCl [9]. This library supports the
digital signatures created by the Ed25519 algorithm, which
can be used to check the identity of ephemeral keys via the
PKI chain-of-trust model.

We have evaluated the performance of generic version of
our HTTPCrypt prototype on Cortex A20 ARM board. And
even with the generic unoptimized C versions of all cryp-
tographic primitives it has shown highes requests per sec-
ond rate then TLS stack (50 complete encrypted requests per
second against 30 requests per second for TLS). However,
the detailed evaluation on embedded platforms is beyond the
scope of this paper.

6. Evaluation
We have built the prototype of HTTPCrypt built on top of the
http-parser library [32] that is in turn based on the pop-
ular Nginx HTTP server code. The goal of our tests was to
compare HTTPCrypt with the standard web workloads using
TLS. We have compared our implementation against Nginx
1.9.5 built with OpenSSL 1.0.2d using TLS v1.2 protocol
with nistp256 curves for both ECDSA and ECDHE.

We used the following configuration for the Nginx bench-
marks:

ssl_ciphers "ECDHE-ECDSA-AES256-GCM-SHA384";

ssl_session_cache off;

ssl_session_tickets off;

ssl_ecdh_curve prime256v1;

keepalive_timeout 0;

8 2015/10/23

For HTTPCrypt testing, we wrote our HTTP server and
benchmarking tool based on the same principles as wrk

(non-blocking IO) and the same HTTP parser.
We ran a sequence of experiments using both Nginx and

the HTTPCrypt prototype. The HTTP client is the wrk [18]
HTTP benchmarking utility with a single testing thread and
50 parallel connections in the test runs.

We first ran the servers in plain HTTP mode with no
encryption enabled at all (“Unencrypted”). When then dis-
abled SSL sessions cache/tickets in order to evaluate the
performance of complete TLS handshakes (“Encrypted, un-
cached”). In the last experiment, we turned on the SSL ses-
sion cache to evaluate the performance of session resump-
tion (“Encrypted, tickets”).

The selection of cipher suites and the ECDHE curve was
based on the assumption that on the tested CPU with hard-
ware AES support (via AES-NI instructions) and vectorised
operations (AVX instructions), the speed of these particular
primitives was optimal. We used the openssl speed com-
mand to ensure that the performance of specific algorithms
was optimal on the tested hardware:

256 bit ecdh (nistp256): 8582.6 op/s

256 bit ecdsa(nistp256): 15000.0 signs/s

aes-256-gcm: 731623.42 kB/s

In all cases, we evaluated serving static files using a
single process on the client and one on the server to estimate
latency and the number of requests per second that were
processed. The client and server were connected over the
10G network interface, and all requests were successfully
processed.

We have also evaluated HTTPCrypt proxying using both
forward proxies, such as squid or tinyproxy, and reverse
proxies, such as nginx or lighttpd. We have not found any
compatibility issues when traversing HTTPCrypt requests
over these proxies.

6.1 Performance Evaluation
Figure 4, shows the number of requests per second of the
experimental runs with Nginx, and Figure 5 shows the same
workload patterns obtained from the HTTPCrypt test suite.

The important results are the tests with encryption en-
abled, and in this case HTTPCrypt demonstrates signifi-
cantly superior requests per second than Nginx/TLS for the
transfer of small files. For larger request the throughput ben-
efits of HTTPCrypt are not so clear, since the handshake cost
is negligible comparing to the cost of bulk encryption and
network transfer.

The better performance of HTTPCrypt is achieved by
use of the faster ECDH crypto primitives, the elimination
of the handshake stages, and skipping encryption of the
unnecessary HTTP headers in favour of the payload.

Furthermore in the Figure 6, we demonstrated the differ-
ence between OpenSSL and HTTPCrypt comparing them
with nginx+TLS as the baseline. OpenSSL mode used the

Figure 4. The performance of Nginx while serving static
files using 1 process on Intel Xeon E5 2.4 GHz

Figure 5. The performance of HTTPCrypt prototype with
ChaCha20-Curve25519 crypto while serving files using 1
process on Intel Xeon E5 2.4 GHz

following set of crypto primitives: NIST p256 curve for
ECDH, AES-256-GCM for authenticated encryption and
hchacha20 as PRF (PRF selection does not influence the
overall performance since its execution time is negligible
comparing to ECDH procedure). This test shows that even
with the equal cryptography model HTTPCrypt is signifi-
cantly faster than TLS for small requests that are common
for the web RPC services.

In the Figure 7, we demonstrated scaling of HTTPCrypt
prototype from the number of independent processes run-
ning on the same machine comparing to TLS. For both ng-
inx/TLS and HTTPCrypt we used the equal number of pro-
cesses for both client and server. This experiment illustrates

9 2015/10/23

Figure 6. The performance of HTTPCrypt prototype with
OpenSSL crypto while serving files using 1 process on Intel
Xeon E5 2.4 GHz

Figure 7. HTTPCurve and Nginx+TLS scaling from the
number of worker processes

the capabilities of HTTPCrypt to scale with the CPU cores
amount increasing.

6.2 Overhead evaluation
The traffic overhead is another important property of an en-
cryption protocol. Therefore, we have compared the extra
data required for HTTPCrypt and TLS connections depend-
ing on the payload size. We have chosen the plain HTTP
request of the same size as the baseline and estimated both
incoming and outcoming traffic on the client side. The re-
sults depicted in the Figure 8 shows that HTTPCrypt intro-
duces less overhead than TLS, especially for small requests,
that could reduce the overall traffic for the encrypted con-
nections comparing to the TLS case.

Figure 8. HTTPCurve and Nginx+TLS traffic overhead
comparing to the plain HTTP

6.3 Latency evaluation
Request latency is an important property for opportunis-
tic encryption, since we want this to be deployed widely
and with no user-visible impact. We compared the request
latency for different encryption methods using the unen-
crypted latency as the baseline. We evaluated the same three
payload models used earlier (§6). We have first ensured that
all latencies are distributed normally by building Q-Q plot
demonstrated in the Figure 11.

The evaluation results are shown in Figure 9 for Nginx
and Figure 10 for HTTPCrypt. We measured the latency
between connecting to the HTTP server, sending a request
and receiving the reply that concludes the complete HTTP
session (keep-alive was disabled). Connection latency is in-
cluded as well since the socket connection time introduces a
small and constant delay.

The latency tests are consistent with the earlier through-
put evaluation: HTTPCrypt provides lower delay than TLS,
but latency degrades when serving large files due to the cur-
rent lack of IO optimisations in our prototype. However,
once again the important result is that for encrypted con-
nections, the benefit from HTTPCrypt compared to HTTPS
is very significant, especially for the common case of small
HTTP response sizes.

Table 1 summarises the work performed by a server to
establish a TLS connection, whilst Table 2 depicts the cor-
responding messages for HTTPCrypt. In TLS, the length of
the initial handshake is at least 4 round trips and can be ex-
tended to even longer in some situations (such as when using
a long certificate chain).

The most expensive computational operations for TLS
are generating a shared secret and signing the random
cookie. In contrast, HTTPCrypt does not require the server
to do any signing, since the random cookie is cheaply placed

10 2015/10/23

Figure 9. The request latency for Nginx while serving files
using 1 process on Intel Xeon E5 2.4 GHz

Figure 10. The request latency for the HTTPCrypt proto-
type while serving files using 1 process on Intel Xeon E5 2.4
GHz

within the encrypted and authenticated payload. The work
in the first stage is significant comparing to the first stage of
TLS; however we discussed in §4.3 that this difference does
not make HTTPCrypt more vulnerable to denial-of-service
attacks than TLS.

7. Related work
There have been several proposals related to improving op-
portunistic encryption support in HTTP, which we now dis-
cuss.

7.1 Transport protocols
TLS 1.3 TLS version 1.3 [13] is the next version of TLS
protocol that defines various features and improvements that

Figure 11. Q-Q plot of latencies distribution for
HTTPCurve serving 500 bytes payload with 1 worker
process

RTT Payload Work done
1 CHello Generate server random

2
SHello

Certificate Send certificates

2(3) SKeyEx Sign random and ephemeral key
3(4) CKeyEx Generate shared secret
4(5) CCSpec -

Table 1. Computation executed by a server at each stage of
TLS connections

RTT Payload Work done

1
Request
Cookie
Payload

Generate shared secret

2
Reply

Payload Create server random addition

Table 2. Computation executed by a server at each stage of
HTTPCrypt connections

are similar to HTTPCrypt properties. For example, it intro-
duces Zero-RTT connection establishment which involves
obtaining of a server’s credentials prior to connection cre-
ation. This feature looks very similar to HTTPCrypt and al-
lows to skip several stages of TLS connection handshake and
skip online signing stage. However, even in this case, replay
protection either requires additional stages or TLS states that
the first client request payload is not replay protected which
could lead to future misuse of Zero-RTT connection feature
in applications. On the other hand, this TLS version does
not change the application interfaces meaning that there is
still the requirement of data copying and changing the IO
logic when enabling TLS encryption. Proxies interaction is

11 2015/10/23

not defined as well, meaning that an incompatible proxy
could force protocol downgrade to a previous version. Fur-
thermore, if TLS communications are disabled in some con-
strained network this filter would apply to TLS 1.3 connec-
tions. HTTPCrypt connections are more hard to detect and
to block by such policies.

TCPCrypt TCPCrypt [10] defines a TCP extension that
implements opportunistic encryption. TCPCrypt does not
define a method to authenticate peers, and extends the TCP
handshake with a certificate exchange phase (performed by
extra packets with the TCP PUSH flag enabled).

TCPCrypt adds one additional RTT over vanilla TCP in
order to establish an encrypted connection, but this hand-
shake procedure requires special TCP packets that could be
filtered by middleboxes.

The lack of peer authentication allows active attacks such
as man-in-the-middle. Nevertheless, TCPCrypt requires no
modifications to existing applications and thus improves the
status quo of TCP not having any encryption by default.

MinimalT MinimalT [28] is designed to create low latency
encrypted tunnels. The authentication and encryption model
in MinimalT are very similar to the HTTPCrypt ones pro-
posed in this paper. For instance, MinimalT uses Cryptobox
for payload encryption, and suggests storing ephemeral keys
in the directory service, assuming that there is a way to estab-
lish the authenticity of directory replies (e.g. via DNSCurve
trusted anchors if DNS is used as a directory).

Another interesting feature defined in MinimalT is the
use of crypto-puzzles instead of the traditional TCP-like
handshake to reduce connection latency significantly while
remaining resistant to denial-of-service attacks. However,
MinimalT also uses a UDP transport and assumes that higher
level protocols will provide reliability delivery, reordering
and congestion control facilities. In contrast, HTTPCrypt
avoids reinventing these aspects of the transport in order to
preserve compatibility with existing middlebox infrastruc-
ture where possible.

7.2 HTTP/2.0 opportunistic encryption
HTTP 2.0 is an effort within the httpbis working group in
the IETF to develop a standardised successor to the HTTP
1.1 protocol. While initial revisions of the specification man-
dated the use of TLS encryption with HTTP 2.0, this was
subsequently made optional in later drafts due a lack of con-
sensus as to the practicality of this approach. There are now
two proposals for HTTP/2.0 that suggest different schemes
of opportunistic encryption [21, 27]. Both of these schemes
aim to provide protection from passive attacks and do not
define concrete methods to encrypt the HTTP payloads.

In the first Internet draft by Paul Hoffman [21], the min-
imal unauthenticated encryption scheme is proposed. It de-
fines an additional agreement stage to establish a shared se-
cret and to select the ciphers suite for a connection. During

these stages, peers can efficiently establish a random cookie
to prevent session replay attacks.

In the second draft, Nottingham and Thomson [27] pro-
pose the of use of the http URI to indicate those HTTP/2.0
connections that are encrypted using unauthenticated TLS.
Services can indicate their support for this mode via an
HTTP-TLS header in their responses.

HTTPCrypt proposes an incremental deployment scheme
that can also include peer authentication. To simplify de-
ployment, HTTPCrypt can first be used as a purely oppor-
tunistic encryption scheme, providing only secrecy in this
mode without any peer authentication. Unlike the above pro-
posed schemes, HTTPCrypt used in unauthenticated mode
requires minimal modifications to existing applications.

8. Conclusions
In this paper, we have proposed and evaluated HTTPCrypt
– an opportunistic HTTP encryption scheme for web ser-
vice that is based on modern state-of-art cryptographic prim-
itives. HTTPCrypt is designed specifically to interoperate
with the existing HTTP ecosystem of middleboxes, and be
relatively easy to integrate into clients and servers. Unlike
related protocols and extensions (§7), HTTPCrypt also ex-
tends beyond pure opportunistic encryption to defines server
authentication methods using the DNS or HTTP to fetch peer
public keys.

We have built a prototype of HTTPCrypt client and
server and evaluated latency, throughput, scaling and over-
head for different payload types. The test results (§6) shows
that HTTPCrypt provides better performance and lower re-
quest latency than traditional HTTP/TLS due to a more
lightweight handshake mechanism. The integration of
HTTPCrypt to existing HTTP servers requires few fewer
dependencies than introducing the full TLS stack just for the
purposes of opportunistic encryption (§5.3).

The major drawback of HTTPCrypt is the absence of
builtin protection from replay attacks. However, we have
discussed application-level methods to resolve this (§4.1.1)
and believe that the resulting simplicity and performance
improvements increase the viability of wider deployment of
the protocol. Furthermore, the majority of web applications
designed for operation over plain HTTP have already replay
attacks protection which can be reused in HTTPCrypt.

We believe that HTTPCrypt is a timely contribution as
the importance of ubiquitous opportunistic encryption is be-
coming ever more important, and early proposals have be-
gun to be discussed in standards bodies (§7.2). We are con-
tinuing to work on HTTPCrypt by building a more effi-
cient implementation using asynchronous IO, a browser plu-
gin and HTTP proxy cache, and defining more fine-grained
denial-of-service attacks protections (§4.3). The source code
to our implementation is open-source under a BSD license
and available from blinded for review.

12 2015/10/23

References
[1] ATENIESE, G., AND MANGARD, S. A new approach to DNS

security (DNSSEC). In Proceedings of the 8th ACM con-
ference on Computer and Communications Security (2001),
ACM, pp. 86–95.

[2] BARRE, S., PAASCH, C., AND BONAVENTURE, O. Multi-
path TCP: from theory to practice. In NETWORKING 2011.
Springer, 2011, pp. 444–457.

[3] BERNSTEIN, D. J. CurveCP: Usable security for the internet,
dec 2010. http://curvecp. org.

[4] BERNSTEIN, D. J. ChaCha, a variant of salsa20. Tech. rep.,
The University of Illinois at Chicago, 2008.

[5] BERNSTEIN, D. J. Cryptography in NaCl. Networking and
Cryptography library (2009).

[6] BERNSTEIN, D. J. DNSCurve: Usable security for DNS,
2009.

[7] BERNSTEIN, D. J. Extending the salsa20 nonce. In Work-
shop record of Symmetric Key Encryption Workshop (2011),
vol. 2011.

[8] BERNSTEIN, D. J., DUIF, N., LANGE, T., SCHWABE, P.,
AND YANG, B.-Y. High-speed high-security signatures. Jour-
nal of Cryptographic Engineering 2, 2 (2012), 77–89.

[9] BERNSTEIN, D. J., VAN GASTEL, B., JANSSEN, W.,
LANGE, T., SCHWABE, P., AND SMETSERS, S. TweetNaCl:
A crypto library in 100 tweets, 2014.

[10] BITTAU, A., HAMBURG, M., HANDLEY, M., MAZIERES,
D., AND BONEH, D. The case for ubiquitous transport-level
encryption. In USENIX Security Symposium (2010), pp. 403–
418.

[11] CHOU, T. Sandy2x: New curve25519 speed records.

[12] DIERKS, T. The transport layer security (TLS) protocol
version 1.2.

[13] DIERKS, T., AND RESCORLA, E. The transport layer security
(tls) protocol version 1.3. draft-ietf-tls-tls13-07, 2015.

[14] DIFFIE, W., VAN OORSCHOT, P., AND WIENER, M. Authen-
tication and authenticated key exchanges. Designs, Codes and
Cryptography 2, 2 (1992), 107–125.

[15] EASTLAKE, D., ET AL. Transport layer security (TLS) exten-
sions: Extension definitions.

[16] EVERSPAUGH, A., ZHAI, Y., JELLINEK, R., RISTENPART,
T., AND SWIFT, M. Not-so-random numbers in virtualized
linux and the whirlwind RNG. In Proceedings of the 2014
IEEE Symposium on Security and Privacy (Washington, DC,
USA, 2014), SP ’14, IEEE Computer Society, pp. 559–574.

[17] FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H.,
MASINTER, L., LEACH, P., AND BERNERS-LEE, T. Hy-
pertext transfer protocol–HTTP/1.1, 1999.

[18] GLOZER, W. Modern HTTP benchmarking tool. https:

//github.com/wg/wrk, 2015. Accessed: 2015-02-20.

[19] GROUP, I. H. W., ET AL. HTTP 2.0 specifications, 2013.

[20] HENINGER, N., DURUMERIC, Z., WUSTROW, E., AND

HALDERMAN, J. A. Mining your ps and qs: Detection of
widespread weak keys in network devices. In Presented as

part of the 21st USENIX Security Symposium (USENIX Secu-
rity 12) (Bellevue, WA, 2012), USENIX, pp. 205–220.

[21] HOFFMAN, P. Minimal unauthenticated encryption
(MUE) for HTTP/2. Internet-Draft draft-hoffman-httpbis-
minimal-unauth-enc-01, IETF Secretariat, December
2013. http://www.ietf.org/internet-drafts/

draft-hoffman-httpbis-minimal-unauth-enc-01.

txt.

[22] HOFFMAN, P., AND SCHLYTER, J. The DNS-based authen-
tication of named entities (DANE) transport layer security
(TLS) protocol: TLSA. Tech. rep., RFC 6698, August, 2012.

[23] HONDA, M., NISHIDA, Y., RAICIU, C., GREENHALGH, A.,
HANDLEY, M., AND TOKUDA, H. Is it still possible to
extend TCP? In Proceedings of the 2011 ACM SIGCOMM
Conference on Internet Measurement Conference (New York,
NY, USA, 2011), IMC ’11, ACM, pp. 181–194.

[24] LANGLEY, A. Transport layer security next protocol negotia-
tion extension. Tech. rep., draft-agl-tls-nextprotoneg-04, May
2012.

[25] MÖLLER, B., AND LANGLEY, A. TLS fallback signaling
cipher suite value (SCSV) for preventing protocol downgrade
attacks. InternetDraft draftietftlsdowngradescsv00 (2014).

[26] MOON, A. Optimized implementations of poly1305, a
fast message-authentication-code. https://github.com/

floodyberry/poly1305-opt/, 2015. Accessed: 2015-10-
23.

[27] NOTTINGHAM, M., AND THOMSON, M. Opportunis-
tic encryption for HTTP URIs. Internet-Draft draft-
nottingham-http2-encryption-03, IETF Secretariat, May
2014. http://www.ietf.org/internet-drafts/

draft-nottingham-http2-encryption-03.txt.

[28] PETULLO, W. M., ZHANG, X., SOLWORTH, J. A., BERN-
STEIN, D. J., AND LANGE, T. MINIMALT: Minimal-latency
networking through better security. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communica-
tions security (2013), ACM, pp. 425–438.

[29] ROGAWAY, P., AND SHRIMPTON, T. Cryptographic hash-
function basics: Definitions, implications, and separations for
preimage resistance, second-preimage resistance, and colli-
sion resistance. In Fast Software Encryption, B. Roy and
W. Meier, Eds., vol. 3017 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2004, pp. 371–388.

[30] SALOWEY, J., ERONEN, P., AND TSCHOFENIG, H. Trans-
port layer security (TLS) session resumption without server-
side state. Tech. rep., RFC 5077, Jan. 2008.

[31] STEWART, R., AND METZ, C. SCTP: new transport protocol
for TCP/IP. Internet Computing, IEEE 5, 6 (2001), 64–69.

[32] SYSOEV, I., AND JOYENT. HTTP request/response parser
for c. https://github.com/joyent/http-parser, 2015.
Accessed: 2015-02-20.

[33] TRANTER, J. Exploring the sendfile system call. Linux
Gazette 91 (2003).

13 2015/10/23

