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Abstract

We introduce HTTPCrypt, a scheme of opportunistic en-
cryption for the plain HTTP protocol designed to interop-
erate with the existing browser, server and proxy ecosys-
tem. HTTPCrypt uses state-of-art cryptographic primi-
tives to provide both high performance throughput and
low latency connection establishment, as well as com-
plete interoperability with any middlebox that supports
plain HTTP traffic. Unlike other opportunistic encryp-
tion schemes, HTTPCrypt defines procedures to estab-
lish name-based authenticity of a server even in the case
of networks with restrictive access policies. We evalu-
ate the practicality of deploying HTTPCrypt by integrat-
ing it into a popular HTTP server stack and evaluating it
against alternative opportunistic encryption schemes.

1 Introduction

Transport Layer Security (TLS) has long been the stan-
dard choice for HTTP data encryption (to prevent pas-
sive snooping) and the validation of peer identities (to
prevent active attacks). Browser connections are secured
by first establishing a TLS connection to the endpoint,
and then issuing standard HTTP requests across this tun-
nel. This separation has significantly increased the la-
tency of encrypted web browsing due to the multiple net-
work round-trips required, and motivated the proposal of
TLS protocol extensions [25] to optimise the process.

The introduction of the HTTP/2.0 standardisation pro-
cess [20] — the first major HTTP protocol revision since
1999 — has brought up the possibility of supporting op-
portunistic encryption for all web browsing, including
those connections whose identities cannot be verified due
to server misconfiguration, self-signed certificates, or ex-
pired signatures. All such proposals (§7.2) have involved
upgrading the connection to TLS, thus maintaining the
dependency to the complex suite of libraries that imple-
ment the full TLS protocol.

This paper introduces HTTPCrypt: an alternative ap-
plication level HTTP extension that enables HTTP pay-
load encryption with the following desirable properties:

e Transparency for existing HTTP caches and prox-
ies, meaning that it is expensive to distinguish
HTTPCrypt requests from plain HTTP requests;

e No significant latency increase of opportunistically
encrypted connections vs plain HTTP;

e Removes the dependency on TLS and replaces it
with cryptography suitable for embedded devices;

e Optional end-to-end identity checking;

e [ow performance overhead for server software, in-
cluding support for using the same efficient kernel
system calls to transfer large files.

The remainder of this paper will first outline the high-
level protocol properties (§2), followed by a detailed ex-
planation (§3), protection against common attacks (§4),
and discussion of some of the quirks unique to HTTP
(85), and conclude by evaluating our implementation of
HTTPCrypt vs a popular application stack (§6).

2 Protocol Overview

HTTPCrypt is designed to work with the HTTP protocol
and its many quirks, and avoids forcing a dependency on
TLS as the sole method of opportunistic encryption. We
will next explain our approach to HTTP compatibility
(§2.1), the impact on performance and latency (§2.2), and
finally how our approach is easy to embed (§2.3).

2.1 HTTP Compatibility

The HTTP protocol has explicitly supported proxying
since its inception, and the influence of middleboxes
can no longer be ignored when updating protocols [24].
Middleboxes have hampered the adoption of many new
Internet protocols; from full transport stacks such as
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Figure 1: The overall structure of an HTTPCrypt connec-
tion. The server public key can be retrieved out-of-band
via DNS, or directly over HTTP.

SCTP [34] or CurveCP [4], to extensions to existing pro-
tocols such as TCPCrypt [13] or MPTCP [3]. It is also
common to encounter monitored gateways that provide
Internet access purely through HTTP proxies that ac-
tively intercept or block HTTPS traffic.

The logical choice to avoid the influence of middle-
boxes while adding opportunistic encryption is to make
HTTP requests that are difficult to distinguish from or-
dinary requests. In particular, the Cookie HTTP header
is well suited to carrying cryptographic data, as it usu-
ally contains an encrypted payload that is indistinguish-
able from random data. The other main difference with
the use of opportunistic encryption vs a fully established
secure transport is that peer identities need not be fully
verified. HTTPCrypt supports establishing the remote
peer’s identity via side channels such as the local DNS
service, and we explain later (§3.1) why this is a reason-
able approach in the modern Internet.

The basic scheme of an HTTPCrypt request is de-
picted in Figure 1. A client obtains the server pub-
lic key out-of-band, and makes a normal HTTP request
with the session key contained in the cookie. The en-
crypted contents then follow containing further protec-
tions. HTTPCrypt is thus compatible with all the ma-
jor HTTP transfer encodings, such as chunked encoding,
and can maintain keep-alive connections just as normal
HTTP does. Moreover, HTTPCrypt natively supports
name based virtual hosts without the need for protocol
extensions such as the TLS Server Name Indication [16].

2.2 Latency and performance

HTTPCrypt requests follow the HTTP model of starting
without any preliminary handshake phases. The client

is responsible for obtaining the server public key (§3.1),
and the only extra information that needs to be passed to
a client connection is the client’s own public key. The
client can therefore encrypt an HTTP request immedi-
ately using its own private key and the server’s public
key, and assume that the server can decrypt the request
using its own private key and the client’s public key.

One drawback of this approach is the vulnerability to
replay attacks, since a server cannot send its own random
data before the initial client request. We discuss later
how developers can mitigate this problem at the applica-
tion level (§4.1) to prevent replaying the whole session.
The initial request can always still be replayed, but this
is not a security flaw if mitigated at the application level.

HTTPCrypt is designed to establish HTTP sessions by
skipping intermediate phases of key exchange or capa-
bility agreement for a connection. The disadvantage of
this approach is that it reduces the flexibility of the con-
nections, but it is also simpler and prevents downgrade
attacks, such as the recent TLS vulnerability [28].

The performance and latency benefits from the above
simplifications are significant, and make this is a viable
approach for widespread implementation of opportunis-
tic encryption. The data passed over HTTPCrypt is en-
crypted in-place, with a small authentication tag for a
data chunk placed prior to each the encrypted payload.
This allows using of multi-buffer kernel system calls
such as writev to avoid data copying and improve per-
formance. It also permits implementations to transfer ar-
bitrary sized chunks of payload to optimize the connec-
tion utilization, and not be limited to a window of the
maximum intermediate buffer size.

It is very common to encounter many short requests
in HTTP, particularly when dealing with proxies that do
not fully support HTTP/1.1 keep-alive. Opportunistic en-
cryption schemes that require TLS handshakes are costly
both in terms of connection setup latency and the request
rate. In contrast, HTTPCrypt skips the full handshake-
term connections, thus supporting the asynchronous re-
quests to advertising networks or loggins counters that
are commonplace in modern websites.

2.3 Code size and embedded appliances

The TLS protocol stack is very complex, and even em-
bedded implementations contain tens of thousands of
lines of code. One reason for the code bloat is that all
TLS implementations have to implement multiple cipher
suites, key exchange and signing schemes for the pur-
poses of backwards compatibility.

Rather than propagate this complexity into opportunis-
tic encryption (which we want deployed as widely as
possible), HTTPCrypt specialises its encryption to be
based on the modern NaCL cryptobox primitives [6].



Cryptobox can be implemented using both a high-
performance profile or as a small library within about
a thousand lines of portable code. Unlike TLS, crypto-
box does not rely on hardware accelerated cryptographic
schemes such as AES-GCM [32], but provides a univer-
sal encryption standard that can benefit from the recent
vectorised instructions in CPUs such as AVX2 or NEON.

3 Architecture

We now describe describe the architecture of HTTPCrypt
in detail, via the handshake procedure (§3.1), request
structure (§3.2), cryptographic primitives (§3.3) and ses-
sion resumption (§3.4).

3.1 Handshake Procedure

The client initially obtains and checks the ephemeral
public key of a server. Since we are dealing with op-
portunistic encryption, it is not necessary to protect this
phase against active attacks. Methods of retrieving the
public key include:

e Obtain an ephemeral public key from the corre-
sponding DNS record, and check the authenticity
of this reply using DNSSEC [2] or DNSCurve [7].

e Obtain a DNS record with the current ephemeral
public key with an Ed25519 [9] signature made by
the long-term certificate of the server.

e Perform a plain-text HTTP OPTIONS request to the
target HTTP server.

The Domain Name System is the preferred way to
obtain the ephemeral public keys since DNS defines a
clear model of trust: the domain owner is the the per-
son of trust if we can verify the DNS reply by means of
DNSSEC or DNSCurve. While both of these DNS exten-
sions define a model of trusted anchors, only the trusted
anchors of DNSSEC are currently widely deployed in the
Internet. Nevertheless, DNSCurve grants greater secu-
rity gain to providing confidential lookups and stronger
cryptographic primitives.

Storing ephemeral keys in the DNS defines their expi-
ration time as equal to the DNS TTL value. HTTPCrypt
defines these methods to store ephemeral keys:

e DANE TLSA records [23] that contain the full
ephemeral key and optionally the signature made by
long-term certificate;

e TXT records can carry the keys and signatures en-
coded by using, for example, Base64 encoding;

e AAAA or A resource records can also encode keys
and signatures that (described below)
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Figure 2: Key material encoding inside AAAA records

Restrictive DNS proxies HTTPCrypt is designed to
pass through middleboxes, and so we cannot solely rely
on DNSSEC or DNSCurve availability. In many net-
works, DNSSEC is filtered by the local recursive re-
solver clearing DNSSEC flags and filtering the relevant
resource records. Therefore, the traditional PKI model
is the only way to establish authenticity of the remote
server. This model defines chains of trust organised via
public key signatures: e.g., an ephemeral key is signed
by server’s long-term certificate that is in turn signed by
some trusted third party certificate authority. The long
term server’s certificate is not used for key exchange and
is only accessed for signing the current ephemeral public
keys, minimising the risk of compromising it if a server
is broken by an attacker.

A client obtains the remote long-term certificate by
making a plain HTTP request (without a Cookie header)
to the endpoint protected by HTTPCrypt. The server re-
sponds with its own public long-term certificate and all
intermediate certificates in the chain.

AAAA record tunnelling Not all types of DNS
records are allowed by some network policies; for in-
stance, a common practice is to filter all unknown DNS
resource records. TLSA records have been proposed rel-
atively recently, and so are treated as unknown by many
DNS recursive forwarders. TXT queries are forbidden in
some networks since such records are frequently used to
construct IP-over-DNS tunnels. This restriction also de-
nies DNSCurve requests that use the TXT compatibility
mode for their encrypted payloads.

In such a constrained network, HTTPCrypt can use
IPv6 AAAA records to encode public key material. Wee
store the relative order of the key material record inside
the first 16 bits of the address and use the remaining 120
bits to encapsulate the payload in network-endian order.
This encoding is depicted in Figure 2.

The first 12 bits are used to define IPv6 addresses. The
order field is required to reconstruct the payload when
a DNS server performs round-robin rotation of resource
records. With 4 bits of order available, it is possible to



encode up to 16 addresses with 112 bits of useful pay-
load. Therefore, to encode a 256-bit key and 512-bit sig-
nature, we need 8 IPv6 addresses: three for the public
key and five for the signature.

Deriving a session key After obtaining the server’s
public key, a client generates (or reuses) its own keypair
and generates the shared secret using the curve25519
scalar multiplication procedure on the server’s public
key and its local private key. An additional round of
pseudo-random permutation then produces the final ses-
sion key[6].

The resulting session key is subsequently used to en-
crypt and authenticate the HTTP payload. The authenti-
cation tag only covers the encrypted payload, since mid-
dleboxes can modify HTTP headers or the structure of
a plain HTTP request. In contrast, the HTTP payload is
not normally transformed by proxies. The rearrangement
of chunked replies could be realistically be performed by
HTTP proxies but HTTPCrypt cannot currently handle
this situation with the selected cryptographic algorithms.

After receiving the HTTPCrypt request from a client,
a server derives the shared secret using its local secret
key and the client’s public key from the Cookie HTTP
header. The cookie also contains the ID of the server’s
public key (§3.2).

All further requests down the TCP connection (includ-
ing HTTP Keep-Alive sessions) are encrypted using the
established shared key. The keep-alive timeout must thus
be less than the ephemeral key lifetime to guarantee for-
ward secrecy for all long term connections.

3.2 Request structure

HTTPCrypt requests are designed to be difficult to distin-
guish from plain HTTP requests. Therefore, HTTPCrypt
uses the HTTP Cookie header to provide the public key
of a client to the server. The structure of this header is:

Cookie: <IDg><pad>=<K_ jjc,;><pad>

All the values are encoded with base64 that is com-
monly used in HTTP cookies. The padding prevents
middleboxes from detecting the specific length of the
public key and ID, and should have unpredictable length
and content for that purposes. The server key ID field ap-
plies a SHA3 cryptographic hash function to the server’s
public key and takes the first 10 bytes of its output:

ID = ftake(10, PRF (pubkey))

The server uses this ID when rotating ephemeral keys
to select the correct key for a particular connection.
Two ID collision probability is 1/280 which is negligi-
ble when used for this purpose.

In HTTPCrypt, the encrypted payload encapsulates
the real HTTP request, but some HTTP headers are used
from the unencrypted part, for instance the:

o Host is used to distinguish name-based virtual hosts
and is required if those hosts have different public
keys. Alternatively, the HTTP server may distin-
guish hosts by the IDg; value and ignore this header.

e User-Agent header may be checked by middle-
boxes, and so it is worth forging this header.

o Content-Length, Content-Range headers are used
by the HTTP session as-is.

e Pragma, Expires and Cache-Control prevents
proxies from caching encrypted requests.

While most of the HTTP headers could be sent unen-
crypted to save computational resources, some headers
such as Cookie or Referer must remain encrypted (the
former because its use is overloaded by the HTTPCrypt
request structure). We do not define the exact list of
headers that must be encrypted as this depends on the
applications’ architecture.

HTTPCrypt uses a random alphanumeric string as the
request URL and encrypts the real URL inside the pay-
load. The unencrypted URL is ignored by a server and
merely uses the path component where encryption starts.
For instance, if HTTPCrypt is enabled for a /user/ URI
path, then all components after this path should be ig-
nored by the server:

considered

~ N
GET /user /random_url?randomquery HTTP/1.1

ignored

The encrypted payload has the following structure:

<Nonce>
<MAC>
<Encrypted HTTP request>

When HTTP chunked encoding is used [18] the struc-
ture changes slightly and each chunk has its own nonce
and MAC tag. The chunk length includes the size of
nonce and MAC. The structure of chunked HTTPCrypt
request is as follows:

<Chunk length>

<Nonce>

<MAC>

<Encrypted chunk content>
<Next chunk>

Encrypted payload

<Zero chunk>

To reconstruct the final HTTP message HTTPCrypt
defines the following procedure:



1. Parse the original request and append all unen-
crypted headers except for the Cookie header.

2. For each encrypted chunk or the whole message
read the nonce, authentication tag and verify the
encrypted content in the remaining data chunk. If
verification succeeds then decrypt the contents and
parse the encapsulated request.

3. The request URI in the encapsulated request re-
places the original URI and all encrypted headers
replace the corresponding unencrypted headers.

If MAC verification fails for any chunk, the peer sends
an HTTP 500 error code inside the encrypted payload
to prevent connection termination by an adversary who
can inject arbitrary HTTP messages to the peers. If any
peer receives unencrypted HTTP message then it should
either ignore the message or terminate the connection.

3.3 Cryptographic primitives

HTTPCrypt encryption is based on the Cryptobox con-
struction defined by Daniel Bernstein in the NaCL cryp-
tographic library [6]. This construction defines both se-
crecy and integrity for the messages based on public key
cryptography, and is a conjunction of (i) public key ex-
change procedure; (ii) a stream cipher; and a (iii) one-
time authentication algorithm.

The wire format of Cryptobox specifies a crypto-
graphic nonce, an authentication tag (MAC) and the en-
crypted payload. Nonces are generated randomly and
their length is chosen to be long enough to make the
probability of repetition negligible. Berstein defines a
nonce length of 24 bytes which is 2!°? of possible nonces
values and the probability of nonces collision as low as
at least 1/2'8 [6].

The original NaCL implementation suggests the fol-
lowing components to be used in the cryptobox:

e curve25519 and hsalsa20 as the public key ex-
change operation

e xsalsa20 for symmetric encryption

e poly1305 for message authentication

At present, the salsa cipher family is superseded by
chacha ciphers that have the same internal architecture
but are optimised for modern hardware and vectorized
operations. We later evaluate the chacha cipher vs other
state-of-art ciphers such as AES (§6). The most sig-
nificant advantage of chacha is good performance on
the commodity hardware, including embedded systems
based on ARM or MIPS processors as well as x86.

Hence, our final selection of symmetric encryption al-
gorithm is the chacha20 stream cipher. Moreover, the
hsalsa and xsalsa ciphers are replaced with the corre-
sponding chacha variants as described in [8].

3.4 Session Resumption

Since the generation of public key shared secrets is
an expensive procedure, HTTPCrypto defines several
approaches to skip it for already establishes sessions.
HTTPCrypt uses the same common principles that are
defined in TLS [14] by means of a session cache (§3.4.1)
and ticket mechanism (§3.4.2).

3.4.1 Session Cache

The session cache stores some of the client’s state on
the server side to avoid recalculating it. The state
in HTTPCrypt includes the hashes of the client’s and
server’s ephemeral public keys, and the resulting shared
secret. When reestablishing a session, a server finds the
cached state based on the public keys fingerprints and
reuses the shared secret instead of regenerating it using
public key cryptography. Replay attacks for session rene-
gotiation must be mitigated as described later (§4.1).

Session expiration is based on the server’s ephemeral
public key lifetime, and a least-recent-use expiration
strategy if there are more clients than session cache space
available. The server must destroy sessions associated
with an expired ephemeral key in order to ensure that
perfect forward secrecy can be preserved.

3.4.2 Sessions tickets

Session tickets are a mechanism for an HTTPCrypt
server to support session resumption without having to
store per-client state [33]. This method implies that a
client supports and enables tickets when resuming an
HTTPCrypt connection. When using session tickets,
the shared state is encrypted by a symmetric secret key
known only by the server and subsequently passed to the
client. The client can then reconnect by including a pre-
viously obtained session ticket in the initial handshake.
The server decrypts and verifies this ticket and restores
the session without an additional key exchange proce-
dure being required.

To use session tickets in HTTPCrypt, a server main-
tains a randomly generated symmetric key used for ticket
encryption, and ensures that it is rotated regularly as
with normal ephemeral public keys. To generate a ticket,
the server encrypts the session key, the current pair of
public keys, the random cookie of the session and the
ticket maximum lifetime using a randomly chosen 24
byte nonce. The resulting ticket is passed within the en-
crypted payload using a special HTTP header:

Session-Ticket: ,<id>=<base6b4_ticket>

The ticket secret id is generated by taking the first 10
bytes of one-way hash function applied to the ticket’s se-



cret key. This hash function must be resistant to preim-
age attacks to avoid key recovery [31], a property that is
guaranteed by modern SHA2 and SHA3 hash functions.

To restore a session with a ticket, a client places
the obtained ticket id and the encrypted payload in the
Cookie header instead of the client’s public key. The
server interprets the id as a session ticket and decrypts
the ticket and reuses it for the following messages within
the session. When renegotiating a session using a ticket,
both the server and client should establish a new random
token to prevent sessions being replayed (§4.1). Stor-
ing of the previous random cookie inside session tickets
helps to avoid replaying the first request when renegoti-
ating.

4 Security Analysis

We now elaborate on the HTTPCrypt protocol’s security
properties (§4.1), how to cloak requests within normal
HTTP traffic operates (§4.2), support for perfect forward
secrecy (§4.3) and denial of service resistance (§4.4). We
define the threat model for HTTPCrypt as follows:

e HTTPCrypt should be resistant to passive, active
and denial-of-service attacks;

e HTTPCrypt should provide both secrecy and in-
tegrity for transmitted payload;

e There should be no easy way to distinguish
HTTPCrypt requests from plain HTTP traffic.

4.1 HTTPCrypt Security Model

To defend against active attacks such as Man-in-the-
Middle, HTTPCrypt uses the traditional model of peer
validation using public key signatures and trusted 3rd
party authorities. When using DNS-based signatures the
authorities are defined as trusted DNS anchors, while in
the case of a certificate chain HTTPCrypt uses the tra-
ditional PKI model where a peer’s key can be signed by
any trusted authority.

HTTPCrypt recommends the use of DNS chains of
trust granted by means of DNSSEC or DNSCurve
anchors. Nevertheless, for embedded appliances or
difficult-to-change infrastructure the cost of a complete
DNSSEC validation might be too expensive. Further-
more, the cryptographic algorithms and standards rec-
ommended by DNSSEC (e.g. 1024-bit RSA), are more
expensive than state-of-art cryptography.

In contrast, DNSCurve provides secure and efficient
cryptographic primitives but is not widely deployed in
the Internet for various reasons — both historical and
more practical since DNSCurve does not interoperate
with intermediate DNS caching. Therefore, the tradi-

tional PKI model based on Ed25519 signatures [9] is a
reasonable fall-back choice for HTTPCrypt validation.

4.1.1 Replay Protection

Protecting against reply attacks is more complicated than
in HTTPS, since HTTPCrypt does not require a server
handshake with a random cookie provided by the server.
In HTTPCrypt, the first request can always be replayed
by an adversary for the duration of the server’s ephemeral
key it is purely client initiated.

It is possible (and recommended) to implement replay
protection at the application level, for example by pro-
viding a unique authentication token from server to a
client before granting access to the restricted area. In
this case, the following session is protected from being
replayed.

The server places the random cookie in the encrypted
and authenticated payload, for example inside a prede-
termined HTTP header. If the first request sent over
HTTPCrypt is limited to an idempotent GET method, an
adversary can capture and replay the first request, but
will not be able to gain any advantage since the server’s
reply then includes a random element. Therefore, an at-
tacker cannot replay any subsequent messages within a
session, in particular side-effecting operations such as
HTTP POST or DELETE methods.

Here is the practical example of replay protection ap-
plied to an HTTPCrypt session. Initially, a client sends a
GET request that contains a client’s random cookie within
the header inside the encrypted payload:

Client-Random: <24 bytes of random data>

A server, in turn, generates the full authentication to-
ken addition by appending its own random cookie and
pushes it inside the encrypted header:

Random: <client_ random><server random>

The random strings should be long enough to make the
probability of their repetition negligible.

Afterwards, all subsequent requests in the session in-
clude this random header to validate the HTTPCrypt ses-
sion. In conjunction with the counter nonces policy de-
scribed next (§4.1.2), this model provides effective re-
play attacksprotection. For example, if an adversary can
repeat the server’s replies, then a client will not be able to
match its own random part. Similarly, a server will fail to
verify its own cookie and will drop the replayed requests
if the client is replayed. Placing random cookies inside
the authenticated and encrypted payload prevents an ad-
versary from both observing or modifying the tokens.



4.1.2 Nonce Counters

Nonces must never be repeated for subsequent requests
during a single session’s lifetime. This requires that both
peers must maintain a list of nonces seen in the session
and drop messages with repeated nonces. Maintaining
this list requires additional memory and limits the num-
ber of requests inside a single keep-alive HTTP session.
This limitation is not pressing in the vast majority of con-
nections since a single session is usually limited to less
than a hundred requests [1].

For longer sessions such as Websockets or long-lived
HTTP connections via JavaScript, the nonce policy can
be switched to a counter model where all nonces (after
the first randomly generated one) are monotonically in-
reasing . In the case of a 24 byte nonce, the probability
of counter repetition is negligible. The nonce policy can
be set by means of an encrypted HTTP header sent by a
server:

Nonce-Policy: counter

4.2 HTTPCrypt Request Cloaking

An HTTPCrypt request has a similar structure to a plain
HTTP message and consists of the unencrypted HTTP
request, and the real HTTP request encapsulated within
an encrypted construction. However, a public key that is
placed inside HTTP Cookie header typically represents
some point on the appropriate elliptic curve for the cryp-
tographic cipher in use. An adversary can thus easily
distinguish this cookie from random data.

Cookie Hiding The Elligator type 2 construction [10]
is used to cloak the presence of a valid HTTPCrypt
cookie. This converts a point on an elliptic curve to a
corresponding uniform hash (or almost uniform if com-
putational resources are scarce). An adversary can still
try to revert the Elligator algorithm and extract the pub-
lic key, but this now requires a computationally expen-
sive traffic analysis of all HTTP cookies in all requests.

Note that we do not aim to make it stenographically
difficult to detect HTTPCrypt requests by middleboxes
in the network path that can monitor the whole HTTP
session and check HTTP headers and peer behaviour pre-
cisely. Instead, we aim to make large-scale passive mon-
itoring to identify HTTPCrypt vs normal HTTP traffic to
be expensive enough to be impractical to perform as a
passive global adversary. Detecting HTTPCrypt requires
deep packet inspection of HTTP traffic, which requires
significantly more resources than, for example, the case
of HTTP+TLS where anyone can detect HTTPS connec-
tion by capturing just a single handshake.

Metadata Exposure The major disadvantage of HTTP
encapsulation is that the request lengths and boundaries
can be observed clearly. For example, when HTTPCrypt
is used to encrypt large file transfers, an adversary can
capture the boundaries of the files, calculate their sizes
and figure out what files are being downloaded. This
sort of data leakage is also applicable to TLS connec-
tions, but in that case an adversary can only estimate
timing of TLS messages to find the boundaries of mes-
sages. HTTPCrypt is weaker since the information about
boundaries is leaked in clear-text. However, it is still pos-
sible to hide the real requests sizes and boundaries.

First, a server can add random and unpredictable
padding to the end of each encrypted request. The real
payload length is controlled by the Content-Length
header that is hidden inside the encrypted part of the re-
quest, which an adversary cannot observe. This method
adds considerable traffic bloat if large files are involved.
In such a case, the server needs to make all replies to
be of a similar size while the real content length might
differ by several orders of magnitude. For other applica-
tions where all replies have almost equal size, the random
padding method has low overhead and prevents an adver-
sary from distinguishing replies solely by their sizes.

Another approach is to take advantage of range re-
quests in the HTTP protocol, and split up the large re-
quest in multiple equal-sized chunks that are reassem-
bled by the client. In this case, another peer needs to
send HTTP requests to obtain the remaining portions of
data, or using a P2P protocol such as Bittorrent that is
specifically designed for this mode of operation. This
can be achieved by placing the following HTTP header
within the encrypted payload:

Remain-Length: <remaining_chunks_size>
Content-Length: <this_chunk_size>

To get the full reply, the peer concatenates the chunks
unless Remain-Length — Content-Length = 0. More so-
phisticated schemes are also possible based on ranged
requests. This approach imposes the overhead of ex-
tra HTTP requests that are required for continuation of
the session. However, when transferring large files, this
overhead is not significant comparing to the cost of bulk
data transfer and encryption.

Combining these two methods allows for hiding the
real request boundaries and cloaking the overall pay-
load size transferred. Moreover, if just a single large file
is transferred over HTTPCrypt, the combination of ran-
dom padding and request splitting hides more informa-
tion than when using a standard TLS+HTTP connection
for the same purpose.



4.3 Perfect Forward Secrecy

HTTPCrypt uses slowly rotating ephemeral public
keys for HTTP servers to provide perfect forward se-
crecy [15]. Clients generate a new keypair for each
unique HTTPCrypt session. If DNS is used to store and
validate public keys, the rotation of ephemeral servers
keys is implicitly defined by the DNS time-to-live (TTL)
property used as the lifetime value for the ephemeral
server’s key. To avoid time synchronisation issues,
servers should generate new ephemeral keys at each pe-
riod of time equal to the DNS resource record’s TTL
value, and publish keys material to the DNS server.

HTTPCrypt does not mandate an exact procedure for
updating the DNS, since any of the standard methods
used all serve; e.g. AXFR, an LDAP directory or by
executing scripts via SSH. Servers just need to be able
to store ephemeral keys for the time equal to two DNS
TTL values to be able to interact with the clients that
have previous keys cached in some DNS cache Hence,
the real ephemeral key lifetime is two DNS TTL peri-
ods. The servers should destroy the keys from persistent
storage once they have expired.

4.4 Denial-of-Service Protection

Availability is an important property of HTTPCrypt if
it is to achieve wide deployment. Unlike TLS, the
HTTPCrypt server computes the shared key one the first
stage of a connection. This operation is expensive in
terms of CPU resources, whereas in TLS all computa-
tionally complex procedures are performed at the later
stages of the handshake (starting from the second mes-
sage received from a client).

At first glance, this is a large disadvantage of the
HTTPCrypt design. However, we observe that the TCP
three-way handshake protects a HTTPCrypt server from
promoting spoofed requests, to the established state. On
the other hand, if an adversary is able to establish a valid
TCP connection (for instance, via a distributed botnet)
then there are no obstacles to continue to the additional
stages of a TLS negotiation and force the server to exe-
cute CPU expensive computations.

Therefore, HTTPCrypt is no more vulnerable to
denial-of-service attacks than HTTP+TLS. Moreover,
since the random response cookies are signed by the
server in TLS, it requires more resources to perform sign-
ing and shared secret generation than the HTTPCrypt
mechanism of merely generating a shared secret and en-
crypting the cookie. HTTPCrypt could also upgrade
its scope to include cryptographic puzzles as part of its
handshake, for example as defined in the MinimalT [30]
protocol. The concrete definition and evaluation of
crypto puzzles are beyond the scope of this paper.

5 Discussion

We now describe the implementation peculiarities used
by our HTTPCrypt prototype, beginning with low-level
cryptographic optimisations (§5.1), operating system ac-
celeration (§5.2), and integration with existing applica-
tion stacks (§5.3).

5.1 Cryptobox Optimizations

The original Cryptobox construction [6] defines
xsalsa20 as the stream cipher. However, the salsa
family of ciphers is superseded by the chacha stream
cipher [5]. We evaluated the performance of bulk data
transfer speeds achieved by different combinations of
stream ciphers and corresponding authentication algo-
rithms to select the most appropriate set of cryptographic
elements for HTTPCrypt. In particular, we compared au-
thenticated encryption constructions based on chacha20
using the poly1305 authenticator, and AES ciphers in
counter mode with the GMAC authenticator.
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Figure 3: Authentication encryption bulk performance
on Intel Core 17-4770K CPU @ 3.50GHz using large
data chunks

The first CPU tested in Figure 3 (an Intel Core I7-
4770K) supports both hardware AES acceleration and
high performance vector operations via the AVX2 in-
structions set. In our benchmarks, we used both hard-
ware AES and vectorisation for ChaCha20-Poly1305.
In our tests, Chacha20 was significantly faster than an
AES-256-GCM cipher with a comparable 256-bit key
length.

The second CPU tested in Figure 4 (an Intel Core2
Quad-Core Q6600) does not support hardware AES
and instead supports the SS3 vector operations.
For this relatively old CPU, ChaCha20-Poly1305
was more than twice as fast than comparable AES
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ciphers. This motivates our final choice to use
ChaCha20-Poly1305authenticated encryption con-
struction in HTTPCrypt for bulk encryption.

The speed of key exchange is critically important for
the overall performance of opportunistic encryption. In
particular, key exchange is a bottleneck for establishing
many short-lived HTTP connections. In order to find
the best implementation to use in HTTPCrypt, we sur-
veyed the results of the SUPERCOP! challenge [11]. We
selected the implementation of curve25519 by Adam
Langley [26] that is optimised for using on 64-bit plat-
forms. There are several variants suitable for 32-bit plat-
forms based on SSE2 or NEON extensions, but not eval-
uated in this paper.

5.2 Operating System Optimizations

Contemporary operating systems provide various high
performance systems calls to optimise the I/O handling
for serving HTTP requests with a high throughput. For
example, an HTTP server running on Linux or FreeBSD
can utilise the sendfile [36] system call to transfer a
file to a socket directly via the kernel without requiring
intermediate copying through user-space buffers. Some
variants of this system call (e.g. the FreeBSD sendfile)
also accept arbitrary prefixes as arguments.

HTTPCrypt can use the semantic of sendfile to
send files encrypted without requiring copying through
userspace. The sendfile interface needs to be extended
to accept a session key and a generated nonce. Using
this information, sendfile can encrypt and authenticate

ISystem for Unified Performance Evaluation Related to Crypto-
graphic Operations and Primitives

the subsequent HTTP payload chunks. In contrast, TLS
encryption is far more complex to integrate with zero-
copy operations in general due to the protocol complex-
ity. Alerts, fragmentation and protocol extensions all re-
quire complex processing that is not easy (or wise) to put
into the kernel.

5.3 Integration with Existing Software

HTTPCrypt is designed to be integrated with existing ap-
plication easily. While it is relatively straightforward to
migrate existing plaintext services to TLS by means of
a proxy such as stud?, it is more difficult to integrate
it directly into an application not designed for it for the
following reasons:

e TLS alerts and handshakes change the connection
processing logic significantly, especially for asyn-
chronous or non-blocking applications;

o TLS uses intermediate buffering for all data trans-
fers that leads to additional latency and performance
penalties.

In contrast, in HTTPCrypt, there are no protocol alerts
or additional handshake stages to complicate integra-
tion. Applications thus can send or receive data with-
out any intermediate steps, leaving the event process-
ing logic in the client and server unchanged. More-
over, an application can create messages in HTTPCrypt
without copying data to an intermediate buffer since all
data is encrypted and authenticated in-place. Listing 5
demonstrate how simple HTTPCrypt request creation us-
ing multiple buffers operations is (namely, writev and
readv).

Reading and processing of HTTPCrypt requests is im-
plemented by extracting the nonce and authentication tag
from the encrypted payload, and parsing the following
encapsulated HTTP request as defined earlier (§3.2).

To migrate to HTTPCrypt from plaintext HTTP, ap-
plications must also use a cryptographic quality ran-
dom number generator. This is particularly important
where there is not much entropy available, for exam-
ple in embedded devices [21] or virtual machines [17].
To deal with this issue, modern operating systems pro-
vide fast pseudo-random numbers generators, for exam-
ple, arc4random in BSD systems or getentropy call
in Linux. On older operating systems, user space crypto-
graphic random numbers generators can be used. Some
of them, for example the libottery [27] library, can
even utilize the same ChaCha20 algorithm as the pseudo-
random function.

*https://github.com/bumptech/stud



int http_crypt_write(
char *plain, size_t plainlen,
char *payload, size_t paylen,
char #*pk, char *sk) {
struct iovec iov[4];
unsigned char n[NONCELEN], m[MACLEN];

randombytes (n, sizeof(n));
cryptobox_encrypt_inplace (

payload, paylen, n, pk, sk, m);
iov[0].iov_base = plain;
iov[0].iov_len = plainlen;
iov[1l].iov_base = n;
iov[1].iov_len = sizeof (n);
iov[2] .iov_base = m;
iov[2] .iov_base = sizeof(m);
iov[3].iov_base = payload;
iov[3].iov_len = paylen;
return (writev(fd, iov, 4));

Figure 5: Sample code fragment illustrating HTTPCrypt
request creation and writing to a socket in C

5.4 Embedded usage

HTTPCrypt is particularly well suited to embedded de-
vices where including the full TLS suite is too large or
too slow to use. The CPUs used in embedded appliances
are often not able to drive encrypted connections at a rea-
sonable rate as they have neither hardware cryptographic
acceleration nor optimised instructions cores.

HTTPCrypt with the static key model is a better choice
to protect communications on such embedded devices.
Despite the fact that this scheme does not guarantee for-
ward secrecy, it is still better than plaintext HTTP con-
nections by providing stronger confidentiality and au-
thentication properties.

There are several optimised embedded implementa-
tions of the Cryptobox construction elements used in
HTTPCrypt; for example, ARM NEON specific opti-
misations to speed up ChaCha20-Poly1305. There is
also a generic implementation of Cryptobox optimized
for code size and memory consumption called Tweet-
NaCl [12]. This library supports the digital signatures
created by the Ed25519 algorithm, which can be used to
check the identity of ephemeral keys via the PKI chain-
of-trust model.

6 Evaluation

We have built the prototype of HTTPCrypt built on top
of the http-parser library [35] that is in turn based
on the popular Nginx HTTP server code. The goal of
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our tests was to estimate the influence of HTTPCrypt
being enabled on the requests rate and connection la-
tency for standard web workloads using TLS. We have
compared our implementation against Nginx 1.7.1 built
with OpenSSL 1.0.1f using nistp256 curves (with the
int 128 optimisations enabled) for both permanent and
ephemeral key pairs for both ECDSA and ECDHE.

We used the following configuration for the Nginx
benchmarks:

ssl_ciphers "ECDHE+ECDSA+AESGCM";
ssl_session_cache off;
ssl_session_tickets off;
ssl_ecdh_curve prime256vi;
keepalive_timeout O;

For HTTPCrypt testing, we wrote our HTTP server
and benchmarking tool based on the same principles as
wrk (non-blocking I0) and the same HTTP parser.

We ran a sequence of experiments using both Nginx
and the HTTPCrypt prototype. The HTTP client is the
wrk [19] HTTP benchmarking utility with a single test-
ing thread and 10 parallel connections in the test runs.

We first ran the servers in plain HTTP mode with no
encryption enabled at all (“Unencrypted”). When then
disabled HTTP keep-alive connections and SSL sessions
cache/tickets in order to evaluate the performance of
complete TLS handshakes (“Encrypted, uncached”). In
the last experiment, we turned on the SSL session cache
to evaluate the performance of session resumption (“En-
crypted, tickets™).

The selection of cipher suites and the ECDHE curve
was based on the assumption that on the tested CPU
with hardware AES support (via AES-NI instructions)
and vectorised operations (AVX instructions), the speed
of these particular primitives was optimal. We used the
openssl speed command to confirm the performance
of specific algorithms used in the test runs:

256 bit ecdh (nistp256):
256 bit ecdsa(nistp256):
aes-128-gcm:

5391.8 op/s
9483.1 signs/s
1301785.26 kB/s

In all cases, we evaluated serving static files using a
single process on the client and one on the server to esti-
mate latency and the number of requests per second that
were processed. The client and server were connected
over the loopback interface to exclude network influence,
and all requests were successfully processed.

6.1 Performance Evaluation

Figure 6, shows the number of requests per second of the
experimental runs with Nginx, and Figure 7 shows the
same workload patterns obtained from the HTTPCrypt
test suite.
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Figure 6: The performance of Nginx while serving static
files using Intel Xeon E3 3.4 GHz

The request throughput of the HTTPCrypt test suite
for the case of plain requests is significantly lower than
the Nginx results as the file size increases. This is a
consequence of inefficient IO operations executed by
HTTPCrypt test suite: it reads the whole file into mem-
ory and writes the resulting reply within a single writev
call. In contrast, Nginx uses the sendfile system call
and switches to chunked encoding for large replies, al-
lowing it to improve both unencrypted and encrypted
throughput for large files.

However, the important results are the tests with en-
cryption enabled, and in this case HTTPCrypt demon-
strates significantly superior requests per second than
Nginx/TLS for the transfer of small files (e.g. 20000
requests per second vs 6000 in case of 1KB requests).
The better performance of HTTPCrypt is achieved by
use of the faster ECDH crypto primitives, the elimina-
tion of the handshake stages, and skipping encryption
of the unnecessary HTTP headers in favour of the pay-
load. As shown in the Figure 3 the difference between
bulk encryption performance between algorithms used in
HTTPCrypt and TLS, namely ChaCha20-Poly1305 and
AES-128-GCl, is negligible.

The performance in the encrypted tests degraded with
large files due to limitations of the IO implementation
in our HTTPCrypt prototype, which does not yet take
full advantage of the sendfile system call and asyn-
chronous IO. This is an area we are improving in the next
revision of our HTTPCrypt library.

6.2 Latency evaluation

Request latency is an important property for opportunis-
tic encryption, since we want this to be deployed widely
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Figure 7: The performance of HTTPCrypt prototype
while serving files using Intel Xeon E3 3.4 GHz

and with no user-visible impact. We compared the re-
quest latency for different encryption methods using the
unencrypted latency as the baseline. We evaluated the
same three payload models used earlier (§6).

The results are shown in Figure 8 for Nginx and Fig-
ure 9 for HTTPCrypt. We measured the latency between
connecting to the HTTP server, sending a request and
receiving the reply that concludes the complete HTTP
session (keep-alive was disabled). Connection latency is
included as well since the socket connection time intro-
duces a small and constant delay.

The latency tests are consistent with the earlier
throughput evaluation: HTTPCrypt provides lower delay
than TLS, but latency degrades when serving large files
due to the current lack of 10 optimisations in our pro-
totype. However, once again the important result is that
for encrypted connections, the benefit from HTTPCrypt
compared to HTTPS is very significant, especially for the
common case of small HTTP response sizes.

Table 1 summarises the work performed by a server to
establish a TLS connection, whilst Table 2 depicts the
corresponding messages for HTTPCrypt. In TLS, the
length of the initial handshake is at least 4 round trips
and can be extended to even longer in some situations
(such as when using a long certificate chain).

The most expensive computational operations for TLS
are generating a shared secret and signing the random
cookie. In contrast, HTTPCrypt does not require the
server to do any signing, since the random cookie is
cheaply placed within the encrypted and authenticated
payload. The work in the first stage is significant com-
paring to the first stage of TLS; however we discussed in
§4.4 that this difference does not make HTTPCrypt more
vulnerable to denial-of-service attacks than TLS.
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7 Related work

There have been several proposals related to improv-
ing opportunistic encryption support in HTTP, which we
now discuss.

7.1 Transport protocols

TCPCrypt TCPCrypt [13] defines a TCP extension
that implements opportunistic encryption. TCPCrypt
does not define a method to authenticate peers, and ex-
tends the TCP handshake with a certificate exchange
phase (performed by extra packets with the TCP PUSH
flag enabled).

TCPCrypt adds one additional RTT over vanilla TCP
in order to establish an encrypted connection, but this
handshake procedure is significantly different from ordi-
nary TCP and can hence be easily filtered (either delib-
erately or frequently accidentally due to protocol scrub-
bing).

The lack of peer authentication allows active attacks
such as man-in-the-middle. Nevertheless, TCPCrypt re-
quires no modifications to existing applications and thus
improves the status quo of TCP not having any encryp-
tion by default..

CurveCP CurveCP is a protocol designed by Daniel
Bernstein as a complete replacement for the TCP proto-
col [4] with the following properties:

Authentication and encryption of all payload
Explicit peer authorization

Own congestion control

Replay attacks protection
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type while serving files using an Intel Xeon E3 3.4 GHz

CurveCP is also based on the NaCL cryptobox con-
struction and defines a very fast key exchange procedure
(namely, the same curve25519 ECDH). CurveCP can
be used to protect plain HTTP, but it requires that HTTP
traffic be transported over the CurveCP UDP transport
rather than conventional TCP. This is problematic from a
deployment perspective.

For peer authentication, CurveCP uses long-term key
encryption instead of signatures. This implies that the
server has access to both the ephemeral and long-term
keys, while in HTTPCrypt, there is no need for a server
to have access to its long-term key. CurveCP suggest that
static key material be stored in the DNS and its confiden-
tiality protected by DNSCurve.

CurveCP is a good choice to protect plain HTTP op-
portunistically, since it is low latency (2 RTT), high per-
formance and a large security improvement. However,
applications have to be significantly changed to adopt
CurveCP, and network middleboxes make avoid filtering
difficult.

MinimalT MinimalT [30] is designed to create low
latency encrypted tunnels. The authentication and en-
cryption model in MinimalT are very similar to the
HTTPCrypt ones proposed in this paper. For instance,
MinimalT uses Cryptobox for payload encryption, and
suggests storing ephemeral keys in the directory service,
assuming that there is a way to establish the authenticity
of directory replies (e.g. via DNSCurve trusted anchors
if DNS is used as a directory).

Another interesting feature defined in MinimalT is
the use of crypto-puzzles instead of the traditional TCP-
like handshake to reduce connection latency significantly
while remaining resistant to denial-of-service attacks.



Table 1: Computation executed by a server at each stage
of TLS connections

However, MinimalT also uses a UDP transport and as-
sumes that higher level protocols will provide reliability
delivery, reordering and congestion control facilities. In
contrast, HTTPCrypt avoids reinventing these aspects of
the transport in order to preserve compatibility with ex-
isting middlebox infrastructure where possible.

7.2 HTTP/2.0 opportunistic encryption

HTTP 2.0 is an effort within the httpbis working group
in the IETF to develop a standardised successor to the
HTTP 1.1 protocol. While initial revisions of the speci-
fication mandated the use of TLS encryption with HTTP
2.0, this was subsequently made optional in later drafts
due a lack of consensus as to the practicality of this
approach. There are now two proposals for HTTP/2.0
that suggest different schemes of opportunistic encryp-
tion [22, 29]. Both of these schemes aim to provide pro-
tection from passive attacks and do not define concrete
methods to encrypt the HTTP payloads.

In the first Internet draft by Paul Hoffman [22], the
minimal unauthenticated encryption scheme is proposed.
It defines an additional agreement stage to establish a
shared secret and to select the ciphers suite for a connec-
tion. During these stages, peers can efficiently establish
a random cookie to prevent session replay attacks.

In the second draft, Nottingham and Thomson [29]
propose the of use of the http URI to indicate those
HTTP/2.0 connections that are encrypted using unau-
thenticated TLS. Services can indicate their support for
this mode via an HTTP-TLS header in their responses.

HTTPCrypt proposes an incremental deployment
scheme that can also include peer authentication. To
simplify deployment, HTTPCrypt can first be used as a
purely opportunistic encryption scheme, providing only
secrecy in this mode without any peer authentication.
Unlike the above proposed schemes, HTTPCrypt used
in unauthenticated mode requires minimal modifications
to existing applications; for example, no additional hand-
shake stages are needed that add complexity to existing
web application stacks.
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RTT | Payload | Work done RTT | Payload | Work done
1 CHello Generate server random Request
SHello . 1 Cookie | Generate shared secret
2 . Send certificates
Certificate Payload
2(3) SKeyEx Sign random and ephemeral > Reply Create server random addition
key Payload
3(4) CKeyEx | Generate shared secret
4(5) CCSpec | - Table 2: Computation executed by a server at each stage

of HTTPCrypt connections

8 Conclusions

In this paper, we have proposed and evaluated
HTTPCrypt — an opportunistic HTTP encryption scheme
that is based on modern state-of-art cryptographic prim-
itives. HTTPCrypt is designed specifically to inter-
operate with the existing HTTP ecosystem of middle-
boxes, and be relatively easy to integrate into clients
and servers. In order to minimise middlebox meddling,
HTTPCrypto is difficult to distinguish from plain HTTP
traffic (§4.2). Unlike related protocols and extensions
(§7), HTTPCrypt also extends beyond pure opportunis-
tic encryption to defines server authentication methods
using the DNS or HTTP to fetch peer public keys.

We have built a prototype of HTTPCrypt client and
server and evaluated latency and throughput for differ-
ent payload types. The test results (§6) shows that
HTTPCrypt provides significantly better performance
and lower request latency than traditional HTTP/TLS
due to its reliance on more efficient cryptographic primi-
tives and a more lightweight handshake mechanism. The
integration of HTTPCrypt to existing HTTP servers re-
quires few fewer dependencies than introducing the full
TLS stack just for the purposes of opportunistic encryp-
tion (§5.3).

The major drawback of HTTPCrypt is the absence
of builtin protection from replay attacks. However, we
have discussed application-level methods to resolve this
(64.1.1) and believe that the resulting simplicity and per-
formance improvements increase the viability of wider
deployment of the protocol. Furthermore, the majority
of web applications designed for operation over plain
HTTP have already replay attacks protection which can
be reused in HTTPCrypt.

We believe that HTTPCrypt is a timely contribution as
the importance of ubiquitous opportunistic encryption is
becoming ever more important, and early proposals have
begun to be discussed in standards bodies (§7.2). We are
continuing to work on HTTPCrypt by building a more ef-
ficient implementation using asynchronous IO, a browser
plugin and HTTP proxy cache, and defining more fine-
grained denial-of-service attacks protections (§4.4). The
source code to our implementation is open-source under
a BSD license and available from blinded for review.
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