
Expressions speed up
… when you are too lazy to calculate everything



What is optimised

• General logic expression: 

• Complex logic:  

• Arithmetic logic: 

• All above:

A & B & C & D

(A & !B) | C & D

A + B + C + D > 2

F & (A + B + C + D > 2)



SA approach

• Evaluate all rules (terribly slow) 

• Use only some of them 

• Use regexps for everything



Old rspamd
• Reverse Polish Notation 

A & B & C -> A B C & & 

• Evaluated rules, applying basic optimisations:
A & B & C & D

0 & 1 & 1 & 0

A & B & C & D
If A equal to 0 there is no need to evaluate other components



Can we do better?

• We want to organise evaluations to execute 
faster ops before expensive ops 

• We want to have a generic evaluation of the 
arguments to decide when to stop and return



Solution: AST

• Abstract Syntax Tree - a tree of expressions 

• Optimize branches in the tree by execution time 
and frequency 

• Apply greedy algorithm to minimise calculations 

• Be as lazy as possible (laziness is good!)



AST building
&

| C

! B

A



AST eval (naive)
&

| C

! B

A

A = 0, B = 1, C = 0

0

1
1 0

1

0



AST branches cut
&

| C

! B

A A = 0, B = 1, C = 0
0

1
1 0

1

0

Eval order

• 1 branch skipped



Can we do better?

• In the previous slide we cut merely a single 
branch 

• Not good, still have to evaluate too many 
unnecessary stuff



AST branches reorder
&

|C

! B

A

A = 0, B = 1, C = 0

0

1
10

1

0

Eval order

• 4 branches skipped



AST branches reorder

• Prioritise branches with fewer operations in the 
underneath levels 

• Skip unnecessary evaluations 

• Reduce the total running time of the expression



N-ary operations
>

+ 2

! B

A

Eval order

C D E



N-ary optimizations
>

+ 2

! B

A

Eval order

C D E

What do we compare?

Here is our limit



N-ary optimizations
>

+ 2

! B

A

Eval order

C D E

What do we compare?

Here is our limit

Stop here



Results

• Rspamd with RPN: 200ms on a normal 
message, 1.6 seconds on stupid large text 
message (10 Mb of text) 

• Rspamd with AST: 40ms on a normal message, 
400ms on stupid large text message 

• SA: ??? (timeout?)



Further steps

• Greedy algorithm to optimize execution time: 

• calculate frequency and average time of a  
component 

• minimize expression by applying greedy 
formula: min(freq / avg_time) for each 
component



Learn dynamically

• We need to re-evaluate order of AST in the real 
time 

• Solution: periodically evaluate atoms weights 
and resort tree using the same greedy algorithm 

• Average time and cost is already evaluated 



Laziness is the source of the progress


